Suppr超能文献

出生后肺部炎症期间核因子-κB通路的激活通过抑制巨噬细胞炎性蛋白-2来维持肺泡化。

Activation of the nuclear factor-κB pathway during postnatal lung inflammation preserves alveolarization by suppressing macrophage inflammatory protein-2.

作者信息

Hou Yanli, Liu Min, Husted Cristiana, Chen Chihhsin, Thiagarajan Kavitha, Johns Jennifer L, Rao Shailaja P, Alvira Cristina M

机构信息

Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California;

Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Department of Biochemistry, Faculty of Medicine, University of Nevada/Reno, Reno, Nevada; and.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2015 Sep 15;309(6):L593-604. doi: 10.1152/ajplung.00029.2015. Epub 2015 Jul 10.

Abstract

A significant portion of lung development is completed postnatally during alveolarization, rendering the immature lung vulnerable to inflammatory stimuli that can disrupt lung structure and function. Although the NF-κB pathway has well-recognized pro-inflammatory functions, novel anti-inflammatory and developmental roles for NF-κB have recently been described. Thus, to determine how NF-κB modulates alveolarization during inflammation, we exposed postnatal day 6 mice to vehicle (PBS), systemic lipopolysaccharide (LPS), or the combination of LPS and the global NF-κB pathway inhibitor BAY 11-7082 (LPS + BAY). LPS impaired alveolarization, decreased lung cell proliferation, and reduced epithelial growth factor expression. BAY exaggerated these detrimental effects of LPS, further suppressing proliferation and disrupting pulmonary angiogenesis, an essential component of alveolarization. The more severe pathology induced by LPS + BAY was associated with marked increases in lung and plasma levels of macrophage inflammatory protein-2 (MIP-2). Experiments using primary neonatal pulmonary endothelial cells (PEC) demonstrated that MIP-2 directly impaired neonatal PEC migration in vitro; and neutralization of MIP-2 in vivo preserved lung cell proliferation and pulmonary angiogenesis and prevented the more severe alveolar disruption induced by the combined treatment of LPS + BAY. Taken together, these studies demonstrate a key anti-inflammatory function of the NF-κB pathway in the early alveolar lung that functions to mitigate the detrimental effects of inflammation on pulmonary angiogenesis and alveolarization. Furthermore, these data suggest that neutralization of MIP-2 may represent a novel therapeutic target that could be beneficial in preserving lung growth in premature infants exposed to inflammatory stress.

摘要

肺发育的很大一部分在出生后肺泡化过程中完成,这使得未成熟的肺易受炎症刺激影响,而炎症刺激会破坏肺的结构和功能。尽管核因子κB(NF-κB)信号通路具有公认的促炎功能,但最近已发现其具有新的抗炎和发育作用。因此,为了确定NF-κB在炎症期间如何调节肺泡化,我们将出生后第6天的小鼠暴露于溶剂(PBS)、全身脂多糖(LPS)或LPS与NF-κB信号通路抑制剂BAY 11-7082的组合(LPS + BAY)中。LPS损害肺泡化,降低肺细胞增殖,并减少上皮生长因子表达。BAY加剧了LPS的这些有害影响,进一步抑制增殖并破坏肺血管生成,而肺血管生成是肺泡化的重要组成部分。LPS + BAY诱导的更严重病理与肺和血浆中巨噬细胞炎性蛋白-2(MIP-2)水平显著升高有关。使用原代新生肺内皮细胞(PEC)进行的实验表明,MIP-2在体外直接损害新生PEC迁移;体内中和MIP-2可保留肺细胞增殖和肺血管生成,并防止LPS + BAY联合治疗诱导的更严重肺泡破坏。综上所述,这些研究表明NF-κB信号通路在早期肺泡肺中具有关键的抗炎功能,其作用是减轻炎症对肺血管生成和肺泡化的有害影响。此外,这些数据表明中和MIP-2可能代表一种新的治疗靶点,对保护暴露于炎症应激的早产儿肺生长有益。

相似文献

1
Activation of the nuclear factor-κB pathway during postnatal lung inflammation preserves alveolarization by suppressing macrophage inflammatory protein-2.
Am J Physiol Lung Cell Mol Physiol. 2015 Sep 15;309(6):L593-604. doi: 10.1152/ajplung.00029.2015. Epub 2015 Jul 10.
2
Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization.
Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L1023-36. doi: 10.1152/ajplung.00230.2011. Epub 2012 Feb 24.
3
Transforming Growth Factor-induced Protein Promotes NF-κB-mediated Angiogenesis during Postnatal Lung Development.
Am J Respir Cell Mol Biol. 2021 Mar;64(3):318-330. doi: 10.1165/rcmb.2020-0153OC.
4
Endothelial-specific loss of IKKβ disrupts pulmonary endothelial angiogenesis and impairs postnatal lung growth.
Am J Physiol Lung Cell Mol Physiol. 2023 Sep 1;325(3):L299-L313. doi: 10.1152/ajplung.00034.2023. Epub 2023 Jun 13.
5
Effect of Intranasal Instillation of Lipopolysaccharide on Lung Development and Its Related Mechanism in Newborn Mice.
J Interferon Cytokine Res. 2019 Nov;39(11):684-693. doi: 10.1089/jir.2019.0006. Epub 2019 Jul 3.
7
Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions.
Birth Defects Res A Clin Mol Teratol. 2014 Mar;100(3):202-16. doi: 10.1002/bdra.23233. Epub 2014 Mar 17.
8
Lipopolysaccharide increases alveolar type II cell number in fetal mouse lungs through Toll-like receptor 4 and NF-kappaB.
Am J Physiol Lung Cell Mol Physiol. 2004 Nov;287(5):L999-1006. doi: 10.1152/ajplung.00111.2004.
10
Csk/Src/EGFR signaling regulates migration of myofibroblasts and alveolarization.
Am J Physiol Lung Cell Mol Physiol. 2016 Mar 15;310(6):L562-71. doi: 10.1152/ajplung.00162.2015. Epub 2016 Jan 15.

引用本文的文献

1
Research progress of microvascular development in bronchopulmonary dysplasia.
Pediatr Investig. 2024 Jul 12;8(4):299-312. doi: 10.1002/ped4.12441. eCollection 2024 Dec.
2
Caffeine: The Story beyond Oxygen-Induced Lung and Brain Injury in Neonatal Animal Models-A Narrative Review.
Antioxidants (Basel). 2024 Sep 3;13(9):1076. doi: 10.3390/antiox13091076.
5
Endothelial-specific loss of IKKβ disrupts pulmonary endothelial angiogenesis and impairs postnatal lung growth.
Am J Physiol Lung Cell Mol Physiol. 2023 Sep 1;325(3):L299-L313. doi: 10.1152/ajplung.00034.2023. Epub 2023 Jun 13.
6
Developmental diversity and unique sensitivity to injury of lung endothelial subtypes during postnatal growth.
iScience. 2023 Jan 31;26(3):106097. doi: 10.1016/j.isci.2023.106097. eCollection 2023 Mar 17.
7
TRAIL protects the immature lung from hyperoxic injury.
Cell Death Dis. 2022 Jul 15;13(7):614. doi: 10.1038/s41419-022-05072-5.
8
When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia.
Mol Cell Pediatr. 2022 Apr 20;9(1):7. doi: 10.1186/s40348-022-00137-z.
9
Lung development and immune status under chronic LPS exposure in rat pups with and without CD26/DPP4 deficiency.
Cell Tissue Res. 2021 Dec;386(3):617-636. doi: 10.1007/s00441-021-03522-8. Epub 2021 Oct 4.
10
Adrenomedullin Deficiency Potentiates Lipopolysaccharide-Induced Experimental Bronchopulmonary Dysplasia in Neonatal Mice.
Am J Pathol. 2021 Dec;191(12):2080-2090. doi: 10.1016/j.ajpath.2021.09.001. Epub 2021 Sep 9.

本文引用的文献

1
Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats.
Am J Physiol Lung Cell Mol Physiol. 2015 May 1;308(9):L861-72. doi: 10.1152/ajplung.00099.2014. Epub 2015 Feb 13.
2
Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice.
Am J Physiol Lung Cell Mol Physiol. 2015 Mar 1;308(5):L464-78. doi: 10.1152/ajplung.00278.2014. Epub 2014 Dec 24.
3
STAT1 plays a role in TLR signal transduction and inflammatory responses.
Immunol Cell Biol. 2014 Oct;92(9):761-9. doi: 10.1038/icb.2014.51. Epub 2014 Jul 15.
4
Severity of neonatal hyperoxia determines structural and functional changes in developing mouse airway.
Am J Physiol Lung Cell Mol Physiol. 2014 Aug 15;307(4):L295-301. doi: 10.1152/ajplung.00208.2013. Epub 2014 Jun 20.
5
Sustained hyperoxia-induced NF-κB activation improves survival and preserves lung development in neonatal mice.
Am J Physiol Lung Cell Mol Physiol. 2014 Jun 15;306(12):L1078-89. doi: 10.1152/ajplung.00001.2014. Epub 2014 Apr 18.
6
Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions.
Birth Defects Res A Clin Mol Teratol. 2014 Mar;100(3):202-16. doi: 10.1002/bdra.23233. Epub 2014 Mar 17.
8
Macrophages and chemokines as mediators of angiogenesis.
Front Physiol. 2013 Jul 5;4:159. doi: 10.3389/fphys.2013.00159. eCollection 2013.
9
The axonal guidance cue semaphorin 3C contributes to alveolar growth and repair.
PLoS One. 2013 Jun 20;8(6):e67225. doi: 10.1371/journal.pone.0067225. Print 2013.
10
Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice.
Am J Physiol Lung Cell Mol Physiol. 2013 Feb 1;304(3):L152-61. doi: 10.1152/ajplung.00013.2012. Epub 2012 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验