Suppr超能文献

持续高氧诱导 NF-κB 激活可改善新生鼠的存活率并维持肺发育。

Sustained hyperoxia-induced NF-κB activation improves survival and preserves lung development in neonatal mice.

机构信息

Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado;

Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania;

出版信息

Am J Physiol Lung Cell Mol Physiol. 2014 Jun 15;306(12):L1078-89. doi: 10.1152/ajplung.00001.2014. Epub 2014 Apr 18.

Abstract

Oxygen toxicity contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). Neonatal mice exposed to hyperoxia develop a simplified lung structure that resembles BPD. Sustained activation of the transcription factor NF-κB and increased expression of protective target genes attenuate hyperoxia-induced mortality in adults. However, the effect of enhancing hyperoxia-induced NF-κB activity on lung injury and development in neonatal animals is unknown. We performed this study to determine whether sustained NF-κB activation, mediated through IκBβ overexpression, preserves lung development in neonatal animals exposed to hyperoxia. Newborn wild-type (WT) and IκBβ-overexpressing (AKBI) mice were exposed to hyperoxia (>95%) or room air from day of life (DOL) 0-14, after which all animals were kept in room air. Survival curves were generated through DOL 14. Lung development was assessed using radial alveolar count (RAC) and mean linear intercept (MLI) at DOL 3 and 28 and pulmonary vessel density at DOL 28. Lung tissue was collected, and NF-κB activity was assessed using Western blot for IκB degradation and NF-κB nuclear translocation. WT mice demonstrated 80% mortality through 14 days of exposure. In contrast, AKBI mice demonstrated 60% survival. Decreased RAC, increased MLI, and pulmonary vessel density caused by hyperoxia in WT mice were significantly attenuated in AKBI mice. These findings were associated with early and sustained NF-κB activation and expression of cytoprotective target genes, including vascular endothelial growth factor receptor 2. We conclude that sustained hyperoxia-induced NF-κB activation improves neonatal survival and preserves lung development. Potentiating early NF-κB activity after hyperoxic exposure may represent a therapeutic intervention to prevent BPD.

摘要

氧毒性导致支气管肺发育不良(BPD)的发病机制。暴露于高氧环境中的新生小鼠会发展出一种简化的肺部结构,类似于 BPD。转录因子 NF-κB 的持续激活和保护性靶基因的表达增加可减轻成人高氧诱导的死亡率。然而,增强新生动物高氧诱导的 NF-κB 活性对肺损伤和发育的影响尚不清楚。我们进行了这项研究,以确定通过 IκBβ过表达介导的持续 NF-κB 激活是否可以保护高氧暴露的新生动物的肺发育。新生野生型(WT)和 IκBβ过表达(AKBI)小鼠从出生后第 0-14 天(DOL)暴露于高氧(>95%)或室内空气,之后所有动物均置于室内空气中。通过 DOL 14 生成生存曲线。通过 DOL 3 和 28 的肺泡计数(RAC)和平均线性截距(MLI)以及 DOL 28 的肺血管密度评估肺发育。收集肺组织,通过 IκB 降解和 NF-κB 核易位的 Western blot 评估 NF-κB 活性。WT 小鼠在 14 天的暴露中有 80%的死亡率。相比之下,AKBI 小鼠的存活率为 60%。WT 小鼠高氧引起的 RAC 减少、MLI 增加和肺血管密度增加在 AKBI 小鼠中明显减轻。这些发现与早期和持续的 NF-κB 激活以及包括血管内皮生长因子受体 2 在内的细胞保护靶基因的表达有关。我们得出结论,持续的高氧诱导的 NF-κB 激活可提高新生动物的存活率并维持肺发育。在高氧暴露后增强早期 NF-κB 活性可能代表预防 BPD 的治疗干预措施。

相似文献

1
Sustained hyperoxia-induced NF-κB activation improves survival and preserves lung development in neonatal mice.
Am J Physiol Lung Cell Mol Physiol. 2014 Jun 15;306(12):L1078-89. doi: 10.1152/ajplung.00001.2014. Epub 2014 Apr 18.
2
IκBβ-mediated NF-κB activation confers protection against hyperoxic lung injury.
Am J Respir Cell Mol Biol. 2014 Feb;50(2):429-38. doi: 10.1165/rcmb.2013-0303OC.
4
Recombinant Human Elafin Ameliorates Chronic Hyperoxia-Induced Lung Injury by Inhibiting Nuclear Factor-Kappa B Signaling in Neonatal Mice.
J Interferon Cytokine Res. 2020 Jun;40(6):320-330. doi: 10.1089/jir.2019.0241. Epub 2020 May 27.
5
Sex-specific differences in neonatal hyperoxic lung injury.
Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L481-93. doi: 10.1152/ajplung.00047.2016. Epub 2016 Jun 24.
7
NO inhibits hyperoxia-induced NF-κB activation in neonatal pulmonary microvascular endothelial cells.
Pediatr Res. 2010 Dec;68(6):484-9. doi: 10.1203/PDR.0b013e3181f917b0.
8
Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury.
Biol Sex Differ. 2023 Aug 8;14(1):50. doi: 10.1186/s13293-023-00535-6.
10
Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization.
Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L1023-36. doi: 10.1152/ajplung.00230.2011. Epub 2012 Feb 24.

引用本文的文献

1
Effect and mechanism of transient receptor potential canonical channel 3 on hyperoxic lung injury in neonatal rats.
Pediatr Discov. 2024 Mar 7;2(2):e65. doi: 10.1002/pdi3.65. eCollection 2024 Jun.
3
Oxygen toxicity: cellular mechanisms in normobaric hyperoxia.
Cell Biol Toxicol. 2023 Feb;39(1):111-143. doi: 10.1007/s10565-022-09773-7. Epub 2022 Sep 16.
4
Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review.
Front Nutr. 2022 Jul 18;9:924036. doi: 10.3389/fnut.2022.924036. eCollection 2022.
5
APAP-Induced IκBβ/NFκB Signaling Drives Hepatic Il6 Expression and Associated Sinusoidal Dilation.
Toxicol Sci. 2022 Jan 24;185(2):158-169. doi: 10.1093/toxsci/kfab131.
6
Early Changes and Indicators Characterizing Lung Aging in Neonatal Chronic Lung Disease.
Front Med (Lausanne). 2021 May 31;8:665152. doi: 10.3389/fmed.2021.665152. eCollection 2021.
7
TGF-β and NF-κB Cross-Talk: Unexpected Encounters in the Developing Lung.
Am J Respir Cell Mol Biol. 2021 Mar;64(3):275-276. doi: 10.1165/rcmb.2020-0515ED.
8
Prevention of Oxygen-Induced Inflammatory Lung Injury by Caffeine in Neonatal Rats.
Oxid Med Cell Longev. 2020 Aug 7;2020:3840124. doi: 10.1155/2020/3840124. eCollection 2020.
10
IL-1 promotes α-epithelial Sodium Channel (α-ENaC) expression in murine lung epithelial cells: involvement of NF-κB.
J Cell Commun Signal. 2020 Sep;14(3):303-314. doi: 10.1007/s12079-019-00533-7. Epub 2019 Oct 29.

本文引用的文献

1
IκBβ-mediated NF-κB activation confers protection against hyperoxic lung injury.
Am J Respir Cell Mol Biol. 2014 Feb;50(2):429-38. doi: 10.1165/rcmb.2013-0303OC.
2
Curcumin protects the developing lung against long-term hyperoxic injury.
Am J Physiol Lung Cell Mol Physiol. 2013 Aug 15;305(4):L301-11. doi: 10.1152/ajplung.00082.2013. Epub 2013 Jun 28.
3
Oxygen saturation and outcomes in preterm infants.
N Engl J Med. 2013 May 30;368(22):2094-104. doi: 10.1056/NEJMoa1302298. Epub 2013 May 5.
4
Biomarkers in bronchopulmonary dysplasia.
Paediatr Respir Rev. 2013 Sep;14(3):173-9. doi: 10.1016/j.prrv.2013.02.008. Epub 2013 Mar 21.
5
Targeting glycogen synthase kinase-3β to prevent hyperoxia-induced lung injury in neonatal rats.
Am J Respir Cell Mol Biol. 2013 May;48(5):578-88. doi: 10.1165/rcmb.2012-0383OC.
6
Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization.
Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L1023-36. doi: 10.1152/ajplung.00230.2011. Epub 2012 Feb 24.
7
Nuclear factor-κB (NF-κB) inhibitory protein IκBβ determines apoptotic cell death following exposure to oxidative stress.
J Biol Chem. 2012 Feb 24;287(9):6230-9. doi: 10.1074/jbc.M111.318246. Epub 2012 Jan 5.
9
NF-κB signaling in fetal lung macrophages disrupts airway morphogenesis.
J Immunol. 2011 Sep 1;187(5):2740-7. doi: 10.4049/jimmunol.1101495. Epub 2011 Jul 20.
10
Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies?
Pediatrics. 2011 Jul;128(1):111-26. doi: 10.1542/peds.2010-3875. Epub 2011 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验