Suppr超能文献

海蛞蝓,加州侧鳃海牛:复杂神经系统与行为进化中的标志性物种。

The Sea Slug, Pleurobranchaea californica: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior.

作者信息

Gillette Rhanor, Brown Jeffrey W

机构信息

*Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 Goodwin Avenue, 524 Burrill Hall, Urbana, IL 61801, USA;

Program in Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Integr Comp Biol. 2015 Dec;55(6):1058-69. doi: 10.1093/icb/icv081. Epub 2015 Jul 10.

Abstract

How and why did complex brain and behavior evolve? Clues emerge from comparative studies of animals with simpler morphology, nervous system, and behavioral economics. The brains of vertebrates, arthropods, and some annelids have highly derived executive structures and function that control downstream, central pattern generators (CPGs) for locomotion, behavioral choice, and reproduction. For the vertebrates, these structures-cortex, basal ganglia, and hypothalamus-integrate topographically mapped sensory inputs with motivation and memory to transmit complex motor commands to relay stations controlling CPG outputs. Similar computations occur in the central complex and mushroom bodies of the arthropods, and in mammals these interactions structure subjective thought and socially based valuations. The simplest model systems available for comparison are opisthobranch molluscs, which have avoided selective pressure for complex bodies, brain, and behavior through potent chemical defenses. In particular, in the sea-slug Pleurobranchaea californica the functions of vertebrates' olfactory bulb and pallium are performed in the peripheral nervous system (PNS) of the chemotactile oral veil. Functions of hypothalamus and basal ganglia are combined in Pleurobranchaea's feeding motor network. The actions of basal ganglia on downstream locomotor regions and spinal CPGs are analogous to Pleurobranchaea's feeding network actions on CPGs for agonist and antagonist behaviors. The nervous systems of opisthobranch and pulmonate gastropods may conserve or reflect relations of the ancestral urbilaterian. Parallels and contrasts in neuronal circuits for action selection in Pleurobranchaea and vertebrates suggest how a basic set of decision circuitry was built upon in evolving segmentation, articulated skeletons, sociality, and highly invested reproductive strategies. They suggest (1) an origin of olfactory bulb and pallium from head-region PNS; (2) modularization of an ancestral feeding network into discrete but interacting executive modules for incentive comparison and decision (basal ganglia), and homeostatic functions (hypothalamus); (3) modification of a multifunctional premotor network for turns and locomotion, and its downstream targets for mid-brain and hind-brain motor areas and spinal CPGs; (4) condensation of a distributed serotonergic network for arousal into the raphe nuclei, with superimposed control by a peptidergic hypothalamic network mediating appetite and arousal; (5) centralization and condensation of the dopaminergic sensory afferents of the PNS, and/or the disperse dopaminergic elements of central CPGs, into the brain nuclei mediating valuation, reward, and motor arousal; and (6) the urbilaterian possessed the basic circuit relations integrating sensation, internal state, and learning for cost-benefit approach-avoidance decisions.

摘要

复杂的大脑和行为是如何以及为何进化的?线索来自对形态、神经系统和行为经济学较为简单的动物的比较研究。脊椎动物、节肢动物和一些环节动物的大脑具有高度特化的执行结构和功能,可控制下游用于运动、行为选择和繁殖的中枢模式发生器(CPG)。对于脊椎动物而言,这些结构——大脑皮层、基底神经节和下丘脑——将拓扑映射的感觉输入与动机和记忆整合起来,以将复杂的运动指令传递至控制CPG输出的中继站。类似的计算过程发生在节肢动物的中央复合体和蘑菇体中,而在哺乳动物中,这些相互作用构成了主观思维和基于社会的价值评估。可用于比较的最简单模型系统是后鳃亚纲软体动物,它们通过强大的化学防御避免了对复杂身体、大脑和行为的选择压力。特别是,在海蛞蝓加州侧鳃中,脊椎动物嗅球和大脑皮层的功能在化学触觉口膜的外周神经系统(PNS)中执行。下丘脑和基底神经节的功能在加州侧鳃的摄食运动网络中结合在一起。基底神经节对下游运动区域和脊髓CPG的作用类似于加州侧鳃摄食网络对CPG的激动和拮抗行为的作用。后鳃亚纲和肺螺亚纲腹足动物的神经系统可能保留或反映了原始两侧对称动物的关系。加州侧鳃和脊椎动物在用于动作选择的神经回路中的异同表明,在进化出分段、有关节的骨骼、社会性和高度投入的繁殖策略的过程中,一组基本的决策电路是如何在此基础上构建的。它们表明:(1)嗅球和大脑皮层起源于头部区域的PNS;(2)将原始摄食网络模块化,形成离散但相互作用的执行模块,用于激励比较和决策(基底神经节)以及稳态功能(下丘脑);(3)对用于转弯和运动的多功能运动前网络及其下游目标进行修改,使其成为中脑和后脑运动区域以及脊髓CPG;(4)将用于唤醒的分布式5-羟色胺能网络浓缩到中缝核中,并由介导食欲和唤醒的肽能下丘脑网络进行叠加控制;(5)将PNS的多巴胺能感觉传入纤维和/或中枢CPG的分散多巴胺能元素集中和浓缩到介导评估、奖励和运动唤醒的脑核中;以及(6)原始两侧对称动物拥有整合感觉、内部状态和学习以进行成本效益趋避决策的基本电路关系。

相似文献

1
The Sea Slug, Pleurobranchaea californica: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior.
Integr Comp Biol. 2015 Dec;55(6):1058-69. doi: 10.1093/icb/icv081. Epub 2015 Jul 10.
2
A common modular design of nervous systems originating in soft-bodied invertebrates.
Front Physiol. 2023 Oct 3;14:1263453. doi: 10.3389/fphys.2023.1263453. eCollection 2023.
3
Coordination of Locomotion by Serotonergic Neurons in the Predatory Gastropod .
J Neurosci. 2023 May 17;43(20):3647-3657. doi: 10.1523/JNEUROSCI.1386-22.2023. Epub 2023 Apr 24.
4
A peripheral subepithelial network for chemotactile processing in the predatory sea slug Pleurobranchaea californica.
PLoS One. 2024 Feb 8;19(2):e0296872. doi: 10.1371/journal.pone.0296872. eCollection 2024.
6
Selective prey avoidance learning in the predatory sea slug Pleurobranchaea californica.
J Exp Biol. 2013 Sep 1;216(Pt 17):3231-6. doi: 10.1242/jeb.079384. Epub 2013 May 9.
7
Neuromodulatory control of a goal-directed decision.
PLoS One. 2014 Jul 21;9(7):e102240. doi: 10.1371/journal.pone.0102240. eCollection 2014.
8
Implementing Goal-Directed Foraging Decisions of a Simpler Nervous System in Simulation.
eNeuro. 2018 Mar 1;5(1). doi: 10.1523/ENEURO.0400-17.2018. eCollection 2018 Jan-Feb.
9
A neuronal network switch for approach/avoidance toggled by appetitive state.
Curr Biol. 2012 Jan 24;22(2):118-23. doi: 10.1016/j.cub.2011.10.055. Epub 2011 Dec 22.
10
Serotonin-immunoreactivity in peripheral tissues of the opisthobranch molluscs Pleurobranchaea californica and Tritonia diomedea.
J Comp Neurol. 1997 Jun 2;382(2):176-88. doi: 10.1002/(sici)1096-9861(19970602)382:2<176::aid-cne3>3.0.co;2-0.

引用本文的文献

1
Social Predation by a Nudibranch Mollusc.
Integr Org Biol. 2025 Apr 28;7(1):obaf017. doi: 10.1093/iob/obaf017. eCollection 2025.
2
Division of labor for defensive retaliation and preemption by the peripheral and central nervous systems in the nudibranch Berghia.
Curr Biol. 2024 May 20;34(10):2175-2185.e4. doi: 10.1016/j.cub.2024.04.038. Epub 2024 May 7.
3
A common modular design of nervous systems originating in soft-bodied invertebrates.
Front Physiol. 2023 Oct 3;14:1263453. doi: 10.3389/fphys.2023.1263453. eCollection 2023.
4
Coordination of Locomotion by Serotonergic Neurons in the Predatory Gastropod .
J Neurosci. 2023 May 17;43(20):3647-3657. doi: 10.1523/JNEUROSCI.1386-22.2023. Epub 2023 Apr 24.
5
Comparative Analysis of Neuropeptides in Homologous Interneurons and Prohormone Annotation in Nudipleuran Sea Slugs.
Front Physiol. 2021 Dec 23;12:809529. doi: 10.3389/fphys.2021.809529. eCollection 2021.
6
Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis.
Biol Bull. 2020 Dec;239(3):189-208. doi: 10.1086/711293. Epub 2020 Nov 20.
7
A locust embryo as predictive developmental neurotoxicity testing system for pioneer axon pathway formation.
Arch Toxicol. 2020 Dec;94(12):4099-4113. doi: 10.1007/s00204-020-02929-6. Epub 2020 Oct 20.
8
Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails.
Front Behav Neurosci. 2019 Apr 2;13:65. doi: 10.3389/fnbeh.2019.00065. eCollection 2019.
9
A role for dopamine in the peripheral sensory processing of a gastropod mollusc.
PLoS One. 2018 Dec 26;13(12):e0208891. doi: 10.1371/journal.pone.0208891. eCollection 2018.
10
Implementing Goal-Directed Foraging Decisions of a Simpler Nervous System in Simulation.
eNeuro. 2018 Mar 1;5(1). doi: 10.1523/ENEURO.0400-17.2018. eCollection 2018 Jan-Feb.

本文引用的文献

1
Catecholamine-Containing Cells in Larval and Postlarval Bivalve Molluscs.
Biol Bull. 1997 Oct;193(2):116-124. doi: 10.2307/1542757.
2
The activity of isolated neurons and the modulatory state of an isolated nervous system represent a recent behavioural state.
J Exp Biol. 2015 Apr 15;218(Pt 8):1151-8. doi: 10.1242/jeb.111930. Epub 2015 Feb 24.
3
Sensing marine biomolecules: smell, taste, and the evolutionary transition from aquatic to terrestrial life.
Front Chem. 2014 Oct 16;2:92. doi: 10.3389/fchem.2014.00092. eCollection 2014.
4
Neuromodulatory control of a goal-directed decision.
PLoS One. 2014 Jul 21;9(7):e102240. doi: 10.1371/journal.pone.0102240. eCollection 2014.
7
The bilaterian forebrain: an evolutionary chimaera.
Curr Opin Neurobiol. 2013 Dec;23(6):1080-9. doi: 10.1016/j.conb.2013.09.005. Epub 2013 Sep 27.
9
Forebrain dopamine neurons project down to a brainstem region controlling locomotion.
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3235-42. doi: 10.1073/pnas.1301125110. Epub 2013 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验