Suppr超能文献

γ-氨基丁酸C型受体在视网膜信号处理中作用的活体视网膜电图研究

In vivo electroretinographic studies of the role of GABAC receptors in retinal signal processing.

作者信息

Wang Jing, Mojumder Deb Kumar, Yan Jun, Xie An, Standaert Robert F, Qian Haohua, Pepperberg David R, Frishman Laura J

机构信息

College of Optometry, University of Houston, Houston, TX 77204, USA.

College of Optometry, University of Houston, Houston, TX 77204, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.

出版信息

Exp Eye Res. 2015 Oct;139:48-63. doi: 10.1016/j.exer.2015.07.002. Epub 2015 Jul 8.

Abstract

All three classes of receptors for the inhibitory neurotransmitter GABA (GABAR) are expressed in the retina. This study investigated roles of GABAR, especially GABACR (GABA(A)-ρ), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABACR versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABACR(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABACR antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABAAR antagonist, SR95531; GABABR antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brown Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABACR in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABACR(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABACR(-/-) mice. Blockade of GABAARs and GABABRs, or agonism of GABABRs did not alter B6 DA b-wave amplitude. The negative scotopic threshold response (nSTR) was slightly less sensitive in GABACR(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABAB agonist properties, and further increased by baclofen. The finding that genetic deletion of GABACR, the GABACR antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for GABACR in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABACR antagonists differed in their effects on nSTR and PhNR; antagonists with GABAB agonist properties enhanced light-driven responses whereas 2-AEMP did not.

摘要

抑制性神经递质γ-氨基丁酸(GABA)的所有三类受体(GABAR)均在视网膜中表达。本研究通过研究GABACR基因缺失与使用受体拮抗剂进行药理学阻断对小鼠视网膜电图(ERG)的影响,来探讨GABAR,尤其是GABACR(GABA(A)-ρ)在体内视网膜信号传导中的作用。在玻璃体内注射GABACR拮抗剂TPMPA、3-APMPA或最近开发的2-AEMP;GABAAR拮抗剂SR95531;GABABR拮抗剂CGP和激动剂巴氯芬之前和之后,从麻醉的GABACR(-/-)小鼠和野生型C57BL/6(B6)小鼠记录短暂的全视野闪光ERG。也在棕色挪威大鼠中进行玻璃体内注射TPMPA和SR95531。直接在分离的大鼠视杆双极细胞中测试2-AEMP对GABA诱导电流的影响,发现2-AEMP在这些细胞中优先阻断GABACR。与B6小鼠相比,GABACR(-/-)小鼠中暗适应(DA)和明适应(LA)ERG b波的最大振幅降低了30%-60%;a波未改变,振荡电位振幅增加。在B6小鼠中,注射TPMPA(大鼠中也是如此)、3-APMPA或2-AEMP后,ERG变得与GABACR(-/-)小鼠的ERG相似。阻断GABAAR和GABABR,或激动GABABR均未改变B6小鼠的DA b波振幅。GABACR(-/-)小鼠的暗视阈值负反应(nSTR)比B6小鼠略不敏感,且不受2-AEMP影响。然而,nSTR和明视负反应(PhNR)的振幅均来自视网膜内层,TPMPA和3-APMPA均增强了它们的振幅,这两种药物均具有GABAB激动剂特性,巴氯芬使其进一步增加。GABACR基因缺失、GABACR拮抗剂2-AEMP和其他拮抗剂均降低ERG b波振幅这一发现,支持了GABACR在确定对b波有贡献的双极细胞的最大反应振幅中起作用。GABACR拮抗剂对nSTR和PhNR的影响不同;具有GABAB激动剂特性的拮抗剂增强光驱动反应,而2-AEMP则不然。

相似文献

1
In vivo electroretinographic studies of the role of GABAC receptors in retinal signal processing.
Exp Eye Res. 2015 Oct;139:48-63. doi: 10.1016/j.exer.2015.07.002. Epub 2015 Jul 8.
4
Full-field electroretinogram in autism spectrum disorder.
Doc Ophthalmol. 2016 Apr;132(2):83-99. doi: 10.1007/s10633-016-9529-y. Epub 2016 Feb 11.
5
Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram.
J Physiol. 2008 May 15;586(10):2551-80. doi: 10.1113/jphysiol.2008.150755. Epub 2008 Apr 3.
6
Ganglion cell contributions to the rat full-field electroretinogram.
J Physiol. 2004 Feb 15;555(Pt 1):153-73. doi: 10.1113/jphysiol.2003.052738. Epub 2003 Oct 24.
7
Retinal A2A and A3 adenosine receptors modulate the components of the rat electroretinogram.
Vis Neurosci. 2017 Jan;34:E001. doi: 10.1017/S0952523816000171.
8
[Animal models of human retinal and optic nerve diseases analysed using electroretinography].
Nippon Ganka Gakkai Zasshi. 2010 Mar;114(3):248-78, discussion 279.
9
The scotopic threshold response of the dark-adapted electroretinogram of the mouse.
J Physiol. 2002 Sep 15;543(Pt 3):899-916. doi: 10.1113/jphysiol.2002.019703.
10
The Effect of PKCα on the Light Response of Rod Bipolar Cells in the Mouse Retina.
Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4961-74. doi: 10.1167/iovs.15-16622.

引用本文的文献

1
Effects of medications on the human electroretinogram: A comprehensive review.
Surv Ophthalmol. 2025 Apr 12. doi: 10.1016/j.survophthal.2025.04.003.
2
Synaptotagmin-9 in mouse retina.
Vis Neurosci. 2024 Sep 18;41:E003. doi: 10.1017/S0952523824000026.
3
SYNAPTOTAGMIN-9 IN MOUSE RETINA.
bioRxiv. 2024 Mar 16:2023.06.27.546758. doi: 10.1101/2023.06.27.546758.
6
Diabetic mice have retinal and choroidal blood flow deficits and electroretinogram deficits with impaired responses to hypercapnia.
PLoS One. 2021 Dec 9;16(12):e0259505. doi: 10.1371/journal.pone.0259505. eCollection 2021.
7
Elavl2 Regulates Retinal Function Via Modulating the Differentiation of Amacrine Cells Subtype.
Invest Ophthalmol Vis Sci. 2021 Jun 1;62(7):1. doi: 10.1167/iovs.62.7.1.
8
Altered Visual Function in a Larval Zebrafish Knockout of Neurodevelopmental Risk Gene pdzk1.
Invest Ophthalmol Vis Sci. 2021 Mar 1;62(3):29. doi: 10.1167/iovs.62.3.29.
9
Rod and Cone Coupling Modulates Photopic ERG Responses in the Mouse Retina.
Front Cell Neurosci. 2020 Sep 25;14:566712. doi: 10.3389/fncel.2020.566712. eCollection 2020.

本文引用的文献

2
The photopic negative response of the mouse electroretinogram: reduction by acute elevation of intraocular pressure.
Invest Ophthalmol Vis Sci. 2013 Jul 12;54(7):4691-7. doi: 10.1167/iovs.13-12415.
3
Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA.
Neuron. 2011 Oct 6;72(1):101-10. doi: 10.1016/j.neuron.2011.07.030.
4
2-Aminoethyl methylphosphonate, a potent and rapidly acting antagonist of GABA(A)-ρ1 receptors.
Mol Pharmacol. 2011 Dec;80(6):965-78. doi: 10.1124/mol.111.071225. Epub 2011 Aug 2.
5
Mammalian retinal horizontal cells are unconventional GABAergic neurons.
J Neurochem. 2011 Feb;116(3):350-62. doi: 10.1111/j.1471-4159.2010.07114.x. Epub 2010 Dec 13.
6
GABA(B) receptor feedback regulation of bipolar cell transmitter release.
J Physiol. 2010 Dec 15;588(Pt 24):4937-49. doi: 10.1113/jphysiol.2010.194233. Epub 2010 Oct 25.
7
Multiple pathways of inhibition shape bipolar cell responses in the retina.
Vis Neurosci. 2011 Jan;28(1):95-108. doi: 10.1017/S0952523810000209. Epub 2010 Oct 8.
8
Mechanisms underlying lateral GABAergic feedback onto rod bipolar cells in rat retina.
J Neurosci. 2010 Feb 10;30(6):2330-9. doi: 10.1523/JNEUROSCI.5574-09.2010.
9
Topical mydriatics affect light-evoked retinal responses in anesthetized mice.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):567-76. doi: 10.1167/iovs.09-4168. Epub 2009 Aug 6.
10
Genetic dissection of rod and cone pathways in the dark-adapted mouse retina.
J Neurophysiol. 2009 Sep;102(3):1945-55. doi: 10.1152/jn.00142.2009. Epub 2009 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验