Abd-El-Barr Muhammad M, Pennesi Mark E, Saszik Shannon M, Barrow Andrew J, Lem Janis, Bramblett Debra E, Paul David L, Frishman Laura J, Wu Samuel M
Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA.
J Neurophysiol. 2009 Sep;102(3):1945-55. doi: 10.1152/jn.00142.2009. Epub 2009 Jul 8.
A monumental task of the mammalian retina is to encode an enormous range (>10(9)-fold) of light intensities experienced by the animal in natural environments. Retinal neurons carry out this task by dividing labor into many parallel rod and cone synaptic pathways. Here we study the operational plan of various rod- and cone-mediated pathways by analyzing electroretinograms (ERGs), primarily b-wave responses, in dark-adapted wildtype, connexin36 knockout, depolarizing rod-bipolar cell (DBCR) knockout, and rod transducin alpha-subunit knockout mice [WT, Cx36(-/-), Bhlhb4(-/-), and Tralpha(-/-)]. To provide additional insight into the cellular origins of various components of the ERG, we compared dark-adapted ERG responses with response dynamic ranges of individual retinal cells recorded with patch electrodes from dark-adapted mouse retinas published from other studies. Our results suggest that the connexin36-mediated rod-cone coupling is weak when light stimulation is weak and becomes stronger as light stimulation increases in strength and that rod signals may be transmitted to some DBCCs via direct chemical synapses. Moreover, our analysis indicates that DBCR responses contribute about 80% of the overall DBC response to scotopic light and that rod and cone signals contribute almost equally to the overall DBC responses when stimuli are strong enough to saturate the rod bipolar cell response. Furthermore, our study demonstrates that analysis of ERG b-wave of dark-adapted, pathway-specific mutants can be used as an in vivo tool for dissecting rod and cone synaptic pathways and for studying the functions of pathway-specific gene products in the retina.
哺乳动物视网膜的一项艰巨任务是对动物在自然环境中所经历的巨大范围(>10^9倍)的光强度进行编码。视网膜神经元通过将工作分工到许多平行的视杆和视锥突触通路来完成这项任务。在这里,我们通过分析暗适应的野生型、连接蛋白36基因敲除、去极化视杆双极细胞(DBCR)基因敲除和视杆转导蛋白α亚基基因敲除小鼠[WT、Cx36(-/-)、Bhlhb4(-/-)和Trα(-/-)]的视网膜电图(ERG),主要是b波反应,来研究各种视杆和视锥介导通路的运作方案。为了更深入了解ERG各成分的细胞起源,我们将暗适应的ERG反应与其他研究发表的用膜片电极从暗适应小鼠视网膜记录的单个视网膜细胞的反应动态范围进行了比较。我们的结果表明,在弱光刺激时,连接蛋白36介导的视杆-视锥耦合较弱,随着光刺激强度的增加而变强,并且视杆信号可能通过直接化学突触传递到一些双极细胞。此外,我们的分析表明,DBCR反应对暗视光的总体双极细胞反应贡献约80%,当刺激强度足以使视杆双极细胞反应饱和时,视杆和视锥信号对总体双极细胞反应的贡献几乎相等。此外,我们的数据表明,对暗适应的、通路特异性突变体的ERG b波进行分析,可作为一种体内工具,用于剖析视杆和视锥突触通路以及研究视网膜中通路特异性基因产物的功能。