Nawaz Schanila, Sánchez Paula, Schmitt Sebastian, Snaidero Nicolas, Mitkovski Mišo, Velte Caroline, Brückner Bastian R, Alexopoulos Ioannis, Czopka Tim, Jung Sang Y, Rhee Jeong S, Janshoff Andreas, Witke Walter, Schaap Iwan A T, Lyons David A, Simons Mikael
Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
Department of Neurology, University of Göttingen, 37075 Göttingen, Germany.
Dev Cell. 2015 Jul 27;34(2):139-151. doi: 10.1016/j.devcel.2015.05.013. Epub 2015 Jul 9.
During CNS development, oligodendrocytes wrap their plasma membrane around axons to generate multilamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic, and biophysical analyses, we identified a key role for actin filament network turnover in myelin growth. At the onset of myelin biogenesis, F-actin is redistributed to the leading edge, where its polymerization-based forces push out non-adhesive and motile protrusions. F-actin disassembly converts protrusions into sheets by reducing surface tension and in turn inducing membrane spreading and adhesion. We identified the actin depolymerizing factor ADF/cofilin1, which mediates high F-actin turnover rates, as an essential factor in this process. We propose that F-actin turnover is the driving force in myelin wrapping by regulating repetitive cycles of leading edge protrusion and spreading.
在中枢神经系统发育过程中,少突胶质细胞将其质膜包裹在轴突周围,以形成多层髓鞘。为了在与轴突的界面处驱动髓鞘前缘的生长,机械力是必需的,但其潜在机制尚不清楚。通过结合形态学、遗传学和生物物理学分析的跨学科方法,我们确定了肌动蛋白丝网络周转在髓鞘生长中的关键作用。在髓鞘生物发生开始时,F-肌动蛋白重新分布到前缘,其基于聚合的力推动非粘性和可移动的突起。F-肌动蛋白的解聚通过降低表面张力并进而诱导膜扩展和粘附,将突起转化为薄片。我们确定了肌动蛋白解聚因子ADF/丝切蛋白1,它介导高F-肌动蛋白周转率,是这一过程中的一个关键因素。我们提出,F-肌动蛋白周转通过调节前缘突起和扩展的重复循环,是髓鞘包裹的驱动力。