Iaea David B, Dikiy Igor, Kiburu Irene, Eliezer David, Maxfield Frederick R
†Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States.
§Weill Cornell Medical College, Rockefeller University, and Memorial Sloan-Kettering Cancer Center Tri-Institutional Chemical Biology Program, New York, New York 10065, United States.
Biochemistry. 2015 Aug 4;54(30):4623-36. doi: 10.1021/acs.biochem.5b00618. Epub 2015 Jul 22.
The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix.
类固醇生成急性调节蛋白相关脂质转运(START)结构域家族由一个保守的210个氨基酸序列定义,该序列折叠成α/β螺旋握结构。这个蛋白质家族的成员结合多种配体,包括胆固醇、磷脂、鞘脂和胆汁酸,在非囊泡脂质转运、代谢和细胞信号传导中具有假定作用。在可溶性START蛋白中,STARD4在大多数组织中表达,先前已证明其能转运固醇,但膜相互作用和固醇结合的分子机制仍不清楚。在这项工作中,我们使用生化技术来表征STARD4的区域,并确定它们在膜相互作用和固醇结合中的作用。我们的结果表明,STARD4通过一个表面暴露的碱性斑块与阴离子膜相互作用,并且在覆盖固醇结合口袋的Omega-1(Ω1)环中引入突变(L124D)会减弱固醇转运活性。为了深入了解L124D突变的减弱机制,我们对野生型和L124D STARD4进行了结构和生物物理研究。这些研究表明,L124D突变降低了蛋白质的构象灵活性,导致膜相互作用和固醇转运水平降低。这些研究还揭示,C末端α螺旋而非Ω1环会分配到膜双层中。基于这些观察结果,我们提出了一个STARD4膜相互作用以及固醇结合和释放的模型,该模型需要Ω1环的动态运动以及C末端α螺旋插入膜中。