Hu Xinli, Deutsch Aaron J, Lenz Tobias L, Onengut-Gumuscu Suna, Han Buhm, Chen Wei-Min, Howson Joanna M M, Todd John A, de Bakker Paul I W, Rich Stephen S, Raychaudhuri Soumya
1] Department of Medicine, Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital, Division of Genetics, Harvard Medical School, Boston, Massachusetts, USA. [3] Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA. [4] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA. [5] Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, USA. [6] Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.
1] Department of Medicine, Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital, Division of Genetics, Harvard Medical School, Boston, Massachusetts, USA. [3] Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA. [4] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA. [5] Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, USA.
Nat Genet. 2015 Aug;47(8):898-905. doi: 10.1038/ng.3353. Epub 2015 Jul 13.
Variation in the human leukocyte antigen (HLA) genes accounts for one-half of the genetic risk in type 1 diabetes (T1D). Amino acid changes in the HLA-DR and HLA-DQ molecules mediate most of the risk, but extensive linkage disequilibrium complicates the localization of independent effects. Using 18,832 case-control samples, we localized the signal to 3 amino acid positions in HLA-DQ and HLA-DR. HLA-DQβ1 position 57 (previously known; P = 1 × 10(-1,355)) by itself explained 15.2% of the total phenotypic variance. Independent effects at HLA-DRβ1 positions 13 (P = 1 × 10(-721)) and 71 (P = 1 × 10(-95)) increased the proportion of variance explained to 26.9%. The three positions together explained 90% of the phenotypic variance in the HLA-DRB1-HLA-DQA1-HLA-DQB1 locus. Additionally, we observed significant interactions for 11 of 21 pairs of common HLA-DRB1-HLA-DQA1-HLA-DQB1 haplotypes (P = 1.6 × 10(-64)). HLA-DRβ1 positions 13 and 71 implicate the P4 pocket in the antigen-binding groove, thus pointing to another critical protein structure for T1D risk, in addition to the HLA-DQ P9 pocket.
人类白细胞抗原(HLA)基因的变异占1型糖尿病(T1D)遗传风险的一半。HLA - DR和HLA - DQ分子中的氨基酸变化介导了大部分风险,但广泛的连锁不平衡使独立效应的定位变得复杂。我们使用18,832个病例对照样本,将信号定位到HLA - DQ和HLA - DR的3个氨基酸位置。HLA - DQβ1第57位(先前已知;P = 1×10^(-1,355))自身解释了总表型变异的15.2%。HLA - DRβ1第13位(P = 1×10^(-721))和第71位(P = 1×10^(-95))的独立效应使解释的变异比例增加到26.9%。这三个位置共同解释了HLA - DRB1 - HLA - DQA1 - HLA - DQB1基因座中90%的表型变异。此外,我们观察到21对常见的HLA - DRB1 - HLA - DQA1 - HLA - DQB1单倍型中有11对存在显著相互作用(P = 1.6×10^(-64))。HLA - DRβ1第13位和第71位涉及抗原结合槽中的P4口袋,因此除了HLA - DQ P9口袋外,还指出了T1D风险的另一个关键蛋白质结构。