Zhao Hanchao, Palencia Andres, Seiradake Elena, Ghaemi Zhaleh, Cusack Stephen, Luthey-Schulten Zaida, Martinis Susan
European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265 , 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France.
ACS Chem Biol. 2015 Oct 16;10(10):2277-85. doi: 10.1021/acschembio.5b00291. Epub 2015 Jul 31.
A new class of antimicrobial benzoxaborole compounds was identified as a potent inhibitor of leucyl-tRNA synthetase (LeuRS) and therefore of protein synthesis. In a novel mechanism, AN2690 (5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole) blocks fungal cytoplasmic LeuRS by covalently trapping tRNA(Leu) in the editing site of the enzyme's CP1 domain. However, some resistant mutation sites are located outside of the CP1 hydrolytic editing active site. Thus, their mode of action that undermines drug inhibition was not understood. A combination of X-ray crystallography, molecular dynamics, metadynamics, biochemical experiments, and mutational analysis of a distal benzoxaborole-resistant mutant uncovered a eukaryote-specific tyrosine "switch" that is critical to tRNA-dependent post-transfer editing. The tyrosine "switch" has three states that shift between interactions with a lysine and the 3'-hydroxyl of the tRNA terminus, to inhibit or promote post-transfer editing. The oxaborole's mechanism of action capitalizes upon one of these editing active site states. This tunable editing mechanism in eukaryotic and archaeal LeuRSs is proposed to facilitate precise quality control of aminoacylation fidelity. These mechanistic distinctions could also be capitalized upon for development of the benzoxaboroles as a broad spectrum antibacterial.
一类新型抗菌苯并氧杂硼杂环化合物被鉴定为亮氨酰 - tRNA合成酶(LeuRS)的强效抑制剂,因此也是蛋白质合成的强效抑制剂。通过一种新机制,AN2690(5 - 氟 - 1,3 - 二氢 - 1 - 羟基 - 2,1 - 苯并氧杂硼杂环)通过将tRNA(Leu)共价捕获在该酶CP1结构域的编辑位点来阻断真菌细胞质LeuRS。然而,一些抗性突变位点位于CP1水解编辑活性位点之外。因此,它们破坏药物抑制作用的作用方式尚不清楚。通过结合X射线晶体学、分子动力学、元动力学、生化实验以及对远端苯并氧杂硼抗性突变体的突变分析,发现了一种对tRNA依赖性的转移后编辑至关重要的真核生物特异性酪氨酸“开关”。该酪氨酸“开关”有三种状态,在与赖氨酸和tRNA末端3'-羟基的相互作用之间转换,以抑制或促进转移后编辑。氧杂硼的作用机制利用了这些编辑活性位点状态之一。真核生物和古细菌LeuRS中的这种可调节编辑机制被认为有助于精确控制氨酰化保真度的质量。这些机制上的差异也可用于开发作为广谱抗菌剂的苯并氧杂硼类药物。