Suppr超能文献

用于X射线单粒子成像的降噪和掩膜去除神经网络。

Noise reduction and mask removal neural network for X-ray single-particle imaging.

作者信息

Bellisario Alfredo, Maia Filipe R N C, Ekeberg Tomas

机构信息

Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.

出版信息

J Appl Crystallogr. 2022 Feb 1;55(Pt 1):122-132. doi: 10.1107/S1600576721012371.

Abstract

Free-electron lasers could enable X-ray imaging of single biological macromolecules and the study of protein dynamics, paving the way for a powerful new imaging tool in structural biology, but a low signal-to-noise ratio and missing regions in the detectors, colloquially termed 'masks', affect data collection and hamper real-time evaluation of experimental data. In this article, the challenges posed by noise and masks are tackled by introducing a neural network pipeline that aims to restore diffraction intensities. For training and testing of the model, a data set of diffraction patterns was simulated from 10 900 different proteins with molecular weights within the range of 10-100 kDa and collected at a photon energy of 8 keV. The method is compared with a simple low-pass filtering algorithm based on autocorrelation constraints. The results show an improvement in the mean-squared error of roughly two orders of magnitude in the presence of masks compared with the noisy data. The algorithm was also tested at increasing mask width, leading to the conclusion that demasking can achieve good results when the mask is smaller than half of the central speckle of the pattern. The results highlight the competitiveness of this model for data processing and the feasibility of restoring diffraction intensities from unknown structures in real time using deep learning methods. Finally, an example is shown of this preprocessing making orientation recovery more reliable, especially for data sets containing very few patterns, using the expansion-maximization-compression algorithm.

摘要

自由电子激光能够实现对单个生物大分子的X射线成像以及对蛋白质动力学的研究,为结构生物学中一种强大的新型成像工具铺平了道路,但探测器中低信噪比和存在所谓的“掩膜”的缺失区域会影响数据收集,并阻碍对实验数据的实时评估。在本文中,通过引入旨在恢复衍射强度的神经网络管道来应对噪声和掩膜带来的挑战。为了对模型进行训练和测试,从10900种不同的蛋白质模拟了衍射图案数据集,这些蛋白质的分子量在10至100 kDa范围内,并在8 keV的光子能量下收集。该方法与基于自相关约束的简单低通滤波算法进行了比较。结果表明,与有噪声的数据相比,在存在掩膜的情况下,均方误差提高了大约两个数量级。该算法还在不断增加掩膜宽度的情况下进行了测试,得出的结论是,当掩膜小于图案中心散斑的一半时,去掩膜可以取得良好的效果。这些结果突出了该模型在数据处理方面的竞争力以及使用深度学习方法实时从未知结构恢复衍射强度的可行性。最后,展示了一个使用扩展-最大化-压缩算法的预处理示例,该示例使取向恢复更加可靠,特别是对于包含极少图案的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a58/8805166/29adddc44d21/j-55-00122-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验