Salerno K Michael, Bolintineanu Dan S, Lane J Matthew D, Grest Gary S
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062403. doi: 10.1103/PhysRevE.91.062403. Epub 2015 Jun 16.
The high mechanical stiffness of single-nanoparticle-thick membranes is believed to result from the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with a nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH(3)) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Moreover, the particular end group (COOH or CH(3)) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.
单纳米颗粒厚膜的高机械刚度被认为源于介导纳米颗粒间相互作用的配体涂层的局部结构。这些配体结构无法通过实验直接观察到。我们使用分子动力学模拟来观察配体结构的变化,并同时测量膜机械性能的变化。我们之前已经表明,配体端基对配体结构和膜机械性能有很大影响。在此,我们引入并应用定量分子结构测量方法来研究这些膜,并将分析扩展到多种纳米颗粒核心尺寸和配体长度。本文展示了对纳米颗粒核心直径为4或6纳米、配体长度为11或17个亚甲基且配体端基为羧基(COOH)或甲基(CH(3))的纳米颗粒膜的模拟。在羧基封端的配体体系中,结构和相互作用主要由配体的端对端取向主导。在甲基封端的配体体系中,形成了大型有序配体结构,但纳米颗粒间的相互作用主要由无序的、部分相互交错的配体主导。核心尺寸和配体长度也会影响膜内配体的排列以及膜的宏观机械响应,但相较于配体端基的作用而言是次要的。此外,特定的端基(COOH或CH(3))会改变配体长度进而影响膜性能的方式。核心尺寸的影响不依赖于配体端基,较大的核心总是导致更硬的膜。在水 - 气界面制备膜的过程中,观察到膜中应力和配体密度的不对称性,干燥后所有膜中应力不对称性依然存在。