da Silva R M, Manchein C, Beims M W, Altmann E G
Departamento de Física, Universidade do Estado de Santa Catarina, 89219-710 Joinville, Brazil.
Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062907. doi: 10.1103/PhysRevE.91.062907. Epub 2015 Jun 8.
We investigate chaos in mixed-phase-space Hamiltonian systems using time series of the finite-time Lyapunov exponents. The methodology we propose uses the number of Lyapunov exponents close to zero to define regimes of ordered (stickiness), semiordered (or semichaotic), and strongly chaotic motion. The dynamics is then investigated looking at the consecutive time spent in each regime, the transition between different regimes, and the regions in the phase space associated to them. Applying our methodology to a chain of coupled standard maps we obtain (i) that it allows for an improved numerical characterization of stickiness in high-dimensional Hamiltonian systems, when compared to the previous analyses based on the distribution of recurrence times; (ii) that the transition probabilities between different regimes are determined by the phase-space volume associated to the corresponding regions; and (iii) the dependence of the Lyapunov exponents with the coupling strength.
我们使用有限时间李雅普诺夫指数的时间序列来研究混合相空间哈密顿系统中的混沌现象。我们提出的方法利用接近零的李雅普诺夫指数的数量来定义有序(粘性)、半有序(或半混沌)和强混沌运动的状态。然后通过观察在每个状态下连续花费的时间、不同状态之间的转变以及与之相关的相空间区域来研究动力学。将我们的方法应用于耦合标准映射链,我们得到:(i)与基于递归时间分布的先前分析相比,它能够对高维哈密顿系统中的粘性进行改进的数值表征;(ii)不同状态之间的转变概率由与相应区域相关的相空间体积决定;(iii)李雅普诺夫指数与耦合强度的依赖关系。