Department of Physics, Faculty of Science, Ege University, Izmir, 35100, Turkey.
American Collegiate Institute, Izmir, 35290, Turkey.
Sci Rep. 2022 May 20;12(1):8575. doi: 10.1038/s41598-022-12213-5.
From the statistical mechanical point of view, area-preserving maps have great potential and importance. These maps exhibit chaotic and regular behavior separately or together in the available phase space as the control parameter changes. Several works on these maps, e.g., the standard map and the web map, have shown that ergodicity breakdown causes the statistical mechanical framework that describes the dynamics of the system to change. In this paper, for a novel generalization of the standard map, which we define by generalizing the periodic function used in its definition, we verify that a q-Gaussian with [Formula: see text] for the probability distribution of sum of the iterates of the system with initial conditions chosen from the nonergodic stability islands is robust. We also show that the probability distributions become more complicated and unexpected limiting behavior occurs for some parameter regimes.
从统计力学的角度来看,保面积映射具有很大的潜力和重要性。这些映射在可用的相空间中随着控制参数的变化分别或共同表现出混沌和规则的行为。关于这些映射的几项工作,例如标准映射和网络映射,表明遍历性的破坏导致描述系统动力学的统计力学框架发生变化。在本文中,对于标准映射的一个新的推广,我们通过推广其定义中使用的周期函数来定义,我们验证了对于初始条件从非遍历稳定性岛中选择的系统的迭代和的概率分布为[Formula: see text]的 q-高斯是鲁棒的。我们还表明,对于某些参数范围,概率分布变得更加复杂,并且会出现意想不到的极限行为。