Jüngling Thomas, D'Huys Otti, Kinzel Wolfgang
Institute for Cross-Disciplinary Physics and Complex Systems, IFISC (UIB-CSIC), Campus University of the Balearic Islands, 07122 Palma de Mallorca, Spain.
Institute for Theoretical Physics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062918. doi: 10.1103/PhysRevE.91.062918. Epub 2015 Jun 29.
We investigate the scaling behavior of the maximal Lyapunov exponent in chaotic systems with time delay. In the large-delay limit, it is known that one can distinguish between strong and weak chaos depending on the delay scaling, analogously to strong and weak instabilities for steady states and periodic orbits. Here we show that the Lyapunov exponent of chaotic systems shows significant differences in its scaling behavior compared to constant or periodic dynamics due to fluctuations in the linearized equations of motion. We reproduce the chaotic scaling properties with a linear delay system with multiplicative noise. We further derive analytic limit cases for the stochastic model illustrating the mechanisms of the emerging scaling laws.
我们研究了具有时间延迟的混沌系统中最大Lyapunov指数的标度行为。在大延迟极限下,已知可以根据延迟标度区分强混沌和弱混沌,这类似于稳态和周期轨道的强不稳定性和弱不稳定性。在这里,我们表明,由于线性化运动方程中的波动,混沌系统的Lyapunov指数在其标度行为上与恒定或周期动力学相比有显著差异。我们用具有乘性噪声的线性延迟系统再现了混沌标度特性。我们进一步推导了随机模型的解析极限情况,阐明了新兴标度律的机制。