Tamascelli D, Rosenbach R, Plenio M B
Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy.
Institut für Theoretische Physik & IQST, Albert-Einstein-Allee 11, Universität Ulm, Ulm, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):063306. doi: 10.1103/PhysRevE.91.063306. Epub 2015 Jun 15.
When the amount of entanglement in a quantum system is limited, the relevant dynamics of the system is restricted to a very small part of the state space. When restricted to this subspace the description of the system becomes efficient in the system size. A class of algorithms, exemplified by the time-evolving block-decimation (TEBD) algorithm, make use of this observation by selecting the relevant subspace through a decimation technique relying on the singular value decomposition (SVD). In these algorithms, the complexity of each time-evolution step is dominated by the SVD. Here we show that, by applying a randomized version of the SVD routine (RRSVD), the power law governing the computational complexity of TEBD is lowered by one degree, resulting in a considerable speed-up. We exemplify the potential gains in efficiency at the hand of some real world examples to which TEBD can be successfully applied and demonstrate that for those systems RRSVD delivers results as accurate as state-of-the-art deterministic SVD routines.
当量子系统中的纠缠量有限时,系统的相关动力学被限制在状态空间的一个非常小的部分。当限制在这个子空间时,系统的描述在系统规模方面变得高效。一类以时间演化块抽取(TEBD)算法为代表的算法,通过依赖奇异值分解(SVD)的抽取技术选择相关子空间,利用了这一观察结果。在这些算法中,每个时间演化步骤的复杂度由SVD主导。在这里我们表明,通过应用SVD例程的随机化版本(RRSVD),控制TEBD计算复杂度的幂律降低了一度,从而实现了显著的加速。我们通过一些可以成功应用TEBD的实际例子来举例说明效率方面的潜在提升,并证明对于那些系统,RRSVD提供的结果与最先进的确定性SVD例程一样准确。