Li Huamin, Linderman George C, Szlam Arthur, Stanton Kelly P, Kluger Yuval, Tygert Mark
Program in Applied Mathematics, 51 Prospect St., Yale University, New Haven, CT 06510.
Facebook, 8th floor, 770 Broadway, New York, NY 10003.
ACM Trans Math Softw. 2017 Jan;43(3). doi: 10.1145/3004053.
Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks' MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).
近年来,低秩逼近的随机方法得到了迅猛发展。这些方法主要针对主成分分析以及截断奇异值分解的计算。本文为Mathworks公司的MATLAB(一个广受欢迎的数值计算软件平台)提供了一个基本属于黑箱操作且万无一失的实现方案。正如通过若干测试所表明的那样,低秩逼近的随机算法在基本上所有方面都优于或至少与经典确定性技术(如运行至收敛的兰索斯迭代)相当:准确性、计算效率(速度和内存使用情况)、易用性、可并行性以及可靠性。然而,经典方法仍然是估计谱范数的首选方法,并且在计算最小奇异值和相应奇异向量(或奇异子空间)方面要优越得多。