Suppr超能文献

算法971:主成分分析随机算法的一种实现

Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis.

作者信息

Li Huamin, Linderman George C, Szlam Arthur, Stanton Kelly P, Kluger Yuval, Tygert Mark

机构信息

Program in Applied Mathematics, 51 Prospect St., Yale University, New Haven, CT 06510.

Facebook, 8th floor, 770 Broadway, New York, NY 10003.

出版信息

ACM Trans Math Softw. 2017 Jan;43(3). doi: 10.1145/3004053.

Abstract

Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks' MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).

摘要

近年来,低秩逼近的随机方法得到了迅猛发展。这些方法主要针对主成分分析以及截断奇异值分解的计算。本文为Mathworks公司的MATLAB(一个广受欢迎的数值计算软件平台)提供了一个基本属于黑箱操作且万无一失的实现方案。正如通过若干测试所表明的那样,低秩逼近的随机算法在基本上所有方面都优于或至少与经典确定性技术(如运行至收敛的兰索斯迭代)相当:准确性、计算效率(速度和内存使用情况)、易用性、可并行性以及可靠性。然而,经典方法仍然是估计谱范数的首选方法,并且在计算最小奇异值和相应奇异向量(或奇异子空间)方面要优越得多。

相似文献

3
svt: Singular Value Thresholding in MATLAB.svt:MATLAB中的奇异值阈值处理
J Stat Softw. 2017;81(2). doi: 10.18637/jss.v081.c02. Epub 2017 Nov 8.
5
Fast Randomized Singular Value Thresholding for Low-Rank Optimization.快速随机奇异值阈值化的低秩优化。
IEEE Trans Pattern Anal Mach Intell. 2018 Feb;40(2):376-391. doi: 10.1109/TPAMI.2017.2677440. Epub 2017 Mar 3.
8
Reducing memory cost of exact diagonalization using singular value decomposition.使用奇异值分解降低精确对角化的内存成本。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056701. doi: 10.1103/PhysRevE.84.056701. Epub 2011 Nov 9.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验