Sun Fugen, Wei Yanju, Chen Jianzhuang, Long Donghui, Ling Licheng, Li Yongsheng, Shi Jianlin
Lab of Low-Dimensional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
Nanoscale. 2015 Aug 14;7(30):13043-50. doi: 10.1039/c5nr03708e.
A facile and scalable one-pot approach has been developed to synthesize carbon@MoS2 core-shell microspheres by a hydrothermal method, which involves the fast formation of melamine-resorcinol-formaldehyde polymeric microspheres in situ, followed by direct growth of the MoS2 nanowalls on them. The results give unequivocal proof that melamine could be the key to forming the core-shell microspherical morphology, and the contents of MoS2 shells can be easily tuned by initial ratios of the precursors. After a simple heat treatment, the obtained carbon@MoS2 microspheres simultaneously integrate the nitrogen-doped carbon cores and the hierarchical shells which consist of few-layered MoS2 nanowalls with an expanded interlayer spacing. Their unique architectures are favourable for high electronic/ionic conductivity and accommodate volume strain during the electrochemical reaction of the MoS2 anodes in lithium-ion batteries. Thus, a very high reversibility capacity of 771 mA h g(-1) at 100 mA g(-1) after 100 cycles, and a rate capacity of 598 mA h g(-1) at 2000 mA g(-1) could be achieved for the carbon@MoS2 core-shell microspheres with the optimal composition. Furthermore, a thin carbon coating on the carbon@MoS2 microspheres could further increase the reversible capacity to 856 mA h g(-1) after 100 cycles at 100 mA g(-1). These encouraging results suggest that such a facile and efficient protocol can provide a new pathway to produce hierarchical core-shell microspheres which integrate the structural, morphological and compositional design rationales for advanced lithium-ion batteries.
已经开发出一种简便且可扩展的一锅法,通过水热法合成碳@二硫化钼核壳微球,该方法包括原位快速形成三聚氰胺-间苯二酚-甲醛聚合物微球,然后在其上直接生长二硫化钼纳米壁。结果明确证明三聚氰胺可能是形成核壳微球形貌的关键,并且二硫化钼壳的含量可以通过前驱体的初始比例轻松调节。经过简单的热处理后,所获得的碳@二硫化钼微球同时整合了氮掺杂的碳核和由具有扩大层间距的少层二硫化钼纳米壁组成的分级壳。它们独特的结构有利于高电子/离子传导率,并在锂离子电池中二硫化钼阳极的电化学反应过程中适应体积应变。因此,具有最佳组成的碳@二硫化钼核壳微球在100 mA g(-1)下100次循环后可实现771 mA h g(-1)的非常高的可逆容量,在2000 mA g(-1)下的倍率容量为598 mA h g(-1)。此外,在碳@二硫化钼微球上的薄碳涂层可以在100 mA g(-1)下100次循环后将可逆容量进一步提高到856 mA h g(-1)。这些令人鼓舞的结果表明,这种简便有效的方法可以为生产分级核壳微球提供一条新途径,该微球整合了先进锂离子电池的结构、形态和组成设计原理。