Suppr超能文献

通过结合拓扑相似性和语义相似性对候选疾病基因进行优先级排序。

Prioritization of candidate disease genes by combining topological similarity and semantic similarity.

作者信息

Liu Bin, Jin Min, Zeng Pan

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.

出版信息

J Biomed Inform. 2015 Oct;57:1-5. doi: 10.1016/j.jbi.2015.07.005. Epub 2015 Jul 11.

Abstract

The identification of gene-phenotype relationships is very important for the treatment of human diseases. Studies have shown that genes causing the same or similar phenotypes tend to interact with each other in a protein-protein interaction (PPI) network. Thus, many identification methods based on the PPI network model have achieved good results. However, in the PPI network, some interactions between the proteins encoded by candidate gene and the proteins encoded by known disease genes are very weak. Therefore, some studies have combined the PPI network with other genomic information and reported good predictive performances. However, we believe that the results could be further improved. In this paper, we propose a new method that uses the semantic similarity between the candidate gene and known disease genes to set the initial probability vector of a random walk with a restart algorithm in a human PPI network. The effectiveness of our method was demonstrated by leave-one-out cross-validation, and the experimental results indicated that our method outperformed other methods. Additionally, our method can predict new causative genes of multifactor diseases, including Parkinson's disease, breast cancer and obesity. The top predictions were good and consistent with the findings in the literature, which further illustrates the effectiveness of our method.

摘要

基因与表型关系的识别对于人类疾病的治疗非常重要。研究表明,导致相同或相似表型的基因在蛋白质-蛋白质相互作用(PPI)网络中往往会相互作用。因此,许多基于PPI网络模型的识别方法都取得了良好的效果。然而,在PPI网络中,候选基因编码的蛋白质与已知疾病基因编码的蛋白质之间的一些相互作用非常微弱。因此,一些研究将PPI网络与其他基因组信息相结合,并报告了良好的预测性能。然而,我们认为结果可以进一步改进。在本文中,我们提出了一种新方法,该方法利用候选基因与已知疾病基因之间的语义相似性,在人类PPI网络中为带重启的随机游走算法设置初始概率向量。通过留一法交叉验证证明了我们方法的有效性,实验结果表明我们的方法优于其他方法。此外,我们的方法可以预测多因素疾病的新致病基因,包括帕金森病、乳腺癌和肥胖症。预测结果靠前且与文献中的发现一致,这进一步说明了我们方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验