The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
Adv Mater. 2015 Oct 14;27(38):5830-7. doi: 10.1002/adma.201502218. Epub 2015 Jul 14.
The field of plasmonics has grown to impact a diverse set of scientific disciplines ranging from quantum optics and photovoltaics to metamaterials and medicine. Plasmonics research has traditionally focused on noble metals; however, any material with a sufficiently high carrier density can support surface plasmon modes. Recently, researchers have made great gains in the synthetic (both intrinsic and extrinsic) control over the morphology and doping of nanoscale oxides, pnictides, sulfides, and selenides. These synthetic advances have, collectively, blossomed into a new, emerging class of plasmonic metal chalcogenides that complement traditional metallic materials. Chalcogenide and oxide nanostructures expand plasmonic properties into new spectral domains and also provide a rich suite of chemical controls available to manipulate plasmons, such as particle doping, shape, and composition. New opportunities in plasmonic chalcogenide nanomaterials are highlighted in this article, showing how they may be used to fundamentally tune the interaction and localization of electromagnetic fields on semiconductor surfaces in a way that enables new horizons in basic research and energy-relevant applications.
等离子体学领域的发展已经影响到了从量子光学和光伏学到超材料和医学等多个科学领域。等离子体学研究传统上集中在贵金属上;然而,任何具有足够高载流子密度的材料都可以支持表面等离激元模式。最近,研究人员在纳米级氧化物、磷化物、硫化物和硒化物的形态和掺杂的固有和外在合成控制方面取得了重大进展。这些合成上的进步共同催生了一类新的、新兴的等离子体金属硫族化物,它们补充了传统的金属材料。硫族化物和氧化物纳米结构将等离子体特性扩展到新的光谱区域,并提供了一系列丰富的化学控制手段来操纵等离子体,如粒子掺杂、形状和组成。本文强调了等离子体硫族化物纳米材料中的新机遇,展示了它们如何用于从根本上调整半导体表面电磁场的相互作用和局域化,从而为基础研究和与能源相关的应用开辟新的视野。