Uzkudun Manu, Marcon Luciano, Sharpe James
EMBL-CRG Systems Biology Program Centre for Genomic Regulation (CRG) Universitat Pompeu Fabra (UPF), Barcelona Spain.
EMBL-CRG Systems Biology Program Centre for Genomic Regulation (CRG) Universitat Pompeu Fabra (UPF), Barcelona Spain Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
Mol Syst Biol. 2015 Jul 14;11(7):815. doi: 10.15252/msb.20145882.
Parameter optimization coupled with model selection is a convenient approach to infer gene regulatory networks from experimental gene expression data, but so far it has been limited to single cells or static tissues where growth is not significant. Here, we present a computational study in which we determine an optimal gene regulatory network from the spatiotemporal dynamics of gene expression patterns in a complex 2D growing tissue (non-isotropic and heterogeneous growth rates). We use this method to predict the regulatory mechanisms that underlie proximodistal (PD) patterning of the developing limb bud. First, we map the expression patterns of the PD markers Meis1, Hoxa11 and Hoxa13 into a dynamic description of the tissue movements that drive limb morphogenesis. Secondly, we use reverse-engineering to test how different gene regulatory networks can interpret the opposing gradients of fibroblast growth factors (FGF) and retinoic acid (RA) to pattern the PD markers. Finally, we validate and extend the best model against various previously published manipulative experiments, including exogenous application of RA, surgical removal of the FGF source and genetic ectopic expression of Meis1. Our approach identifies the most parsimonious gene regulatory network that can correctly pattern the PD markers downstream of FGF and RA. This network reveals a new model of PD regulation which we call the "crossover model", because the proximal morphogen (RA) controls the distal boundary of Hoxa11, while conversely the distal morphogens (FGFs) control the proximal boundary.
参数优化与模型选择相结合是一种从实验基因表达数据推断基因调控网络的便捷方法,但迄今为止,它仅限于生长不显著的单细胞或静态组织。在此,我们进行了一项计算研究,从复杂二维生长组织(非各向同性和异质生长速率)中基因表达模式的时空动态确定最优基因调控网络。我们用此方法预测发育中肢体芽近端 - 远端(PD)模式形成的调控机制。首先,我们将PD标记物Meis1、Hoxa11和Hoxa13的表达模式映射到驱动肢体形态发生的组织运动的动态描述中。其次,我们使用逆向工程来测试不同的基因调控网络如何解释成纤维细胞生长因子(FGF)和视黄酸(RA)的相反梯度以形成PD标记物的模式。最后,我们针对各种先前发表的操纵实验验证并扩展最佳模型,包括外源性应用RA、手术切除FGF源以及Meis1的基因异位表达。我们的方法确定了最简约的基因调控网络,该网络可以正确地在FGF和RA下游形成PD标记物的模式。这个网络揭示了一种新的PD调控模型,我们称之为“交叉模型”,因为近端形态发生素(RA)控制Hoxa11的远端边界,而相反地,远端形态发生素(FGFs)控制近端边界。