Camacho-Gomez Daniel, Sorzabal-Bellido Ioritz, Ortiz-de-Solorzano Carlos, Garcia-Aznar Jose Manuel, Gomez-Benito Maria Jose
Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
Solid Tumors and Biomarkers Program, IDISNA, and CIBERONC, Center for Applied Medical Research, University of Navarra, Zaragoza, Spain.
iScience. 2023 Jun 19;26(7):107164. doi: 10.1016/j.isci.2023.107164. eCollection 2023 Jul 21.
How cells orchestrate their cellular functions remains a crucial question to unravel how they organize in different patterns. We present a framework based on artificial intelligence to advance the understanding of how cell functions are coordinated spatially and temporally in biological systems. It consists of a hybrid physics-based model that integrates both mechanical interactions and cell functions with a data-driven model that regulates the cellular decision-making process through a deep learning algorithm trained on image data metrics. To illustrate our approach, we used data from 3D cultures of murine pancreatic ductal adenocarcinoma cells (PDAC) grown in Matrigel as tumor organoids. Our approach allowed us to find the underlying principles through which cells activate different cell processes to self-organize in different patterns according to the specific microenvironmental conditions. The framework proposed here expands the tools for simulating biological systems at the cellular level, providing a novel perspective to unravel morphogenetic patterns.
细胞如何协调其细胞功能仍然是一个关键问题,对于揭示它们如何以不同模式组织起来至关重要。我们提出了一个基于人工智能的框架,以促进对细胞功能在生物系统中如何在空间和时间上进行协调的理解。它由一个基于物理的混合模型组成,该模型将机械相互作用和细胞功能与一个数据驱动模型相结合,该数据驱动模型通过在图像数据指标上训练的深度学习算法来调节细胞决策过程。为了说明我们的方法,我们使用了在基质胶中生长的小鼠胰腺导管腺癌细胞(PDAC)的3D培养数据作为肿瘤类器官。我们的方法使我们能够找到细胞根据特定微环境条件激活不同细胞过程以不同模式进行自我组织的潜在原则。这里提出的框架扩展了在细胞水平模拟生物系统的工具,为揭示形态发生模式提供了新的视角。