Suppr超能文献

信噪比衡量生物计算设备和电路的功效。

Signal-to-Noise Ratio Measures Efficacy of Biological Computing Devices and Circuits.

机构信息

Raytheon BBN Technologies , Cambridge, MA , USA.

出版信息

Front Bioeng Biotechnol. 2015 Jun 30;3:93. doi: 10.3389/fbioe.2015.00093. eCollection 2015.

Abstract

Engineering biological cells to perform computations has a broad range of important potential applications, including precision medical therapies, biosynthesis process control, and environmental sensing. Implementing predictable and effective computation, however, has been extremely difficult to date, due to a combination of poor composability of available parts and of insufficient characterization of parts and their interactions with the complex environment in which they operate. In this paper, the author argues that this situation can be improved by quantitative signal-to-noise analysis of the relationship between computational abstractions and the variation and uncertainty endemic in biological organisms. This analysis takes the form of a ΔSNRdB function for each computational device, which can be computed from measurements of a device's input/output curve and expression noise. These functions can then be combined to predict how well a circuit will implement an intended computation, as well as evaluating the general suitability of biological devices for engineering computational circuits. Applying signal-to-noise analysis to current repressor libraries shows that no library is currently sufficient for general circuit engineering, but also indicates key targets to remedy this situation and vastly improve the range of computations that can be used effectively in the implementation of biological applications.

摘要

工程生物细胞进行计算具有广泛的重要潜在应用,包括精确的医疗治疗、生物合成过程控制和环境感应。然而,由于现有部件的组合性差,以及部件及其与操作环境的相互作用的特征不足,到目前为止,实现可预测和有效的计算一直非常困难。在本文中,作者认为,通过对计算抽象与生物体内固有变异和不确定性之间的关系进行定量的信噪比分析,可以改善这种情况。这种分析采用了每个计算设备的Δ SNRdB 函数的形式,该函数可以从设备的输入/输出曲线和表达噪声的测量中计算出来。然后可以组合这些函数来预测电路将如何实现预期的计算,以及评估生物设备对于工程计算电路的一般适用性。将信噪比分析应用于当前的抑制剂文库表明,目前没有一个文库足以进行通用电路工程,但也指出了关键目标,以弥补这种情况,并大大提高可有效用于生物应用实现的计算范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4709/4485182/709578ea1fe4/fbioe-03-00093-g001.jpg

相似文献

1
Signal-to-Noise Ratio Measures Efficacy of Biological Computing Devices and Circuits.
Front Bioeng Biotechnol. 2015 Jun 30;3:93. doi: 10.3389/fbioe.2015.00093. eCollection 2015.
2
Scaling up genetic circuit design for cellular computing: advances and prospects.
Nat Comput. 2018;17(4):833-853. doi: 10.1007/s11047-018-9715-9. Epub 2018 Oct 5.
3
Complex cellular logic computation using ribocomputing devices.
Nature. 2017 Aug 3;548(7665):117-121. doi: 10.1038/nature23271. Epub 2017 Jul 26.
4
Implementing re-configurable biological computation with distributed multicellular consortia.
Nucleic Acids Res. 2022 Nov 28;50(21):12578-12595. doi: 10.1093/nar/gkac1120.
5
Synthetic biology: insights into biological computation.
Integr Biol (Camb). 2016 Apr 18;8(4):518-32. doi: 10.1039/c5ib00274e. Epub 2016 Apr 13.
6
Linear double-stranded DNAs as innovative biological parts to implement genetic circuits in mammalian cells.
FEBS J. 2019 Jun;286(12):2341-2354. doi: 10.1111/febs.14816. Epub 2019 Apr 11.
7
Distributed biological computation with multicellular engineered networks.
Nature. 2011 Jan 13;469(7329):207-11. doi: 10.1038/nature09679. Epub 2010 Dec 8.
8
Synthetic analog computation in living cells.
Nature. 2013 May 30;497(7451):619-23. doi: 10.1038/nature12148. Epub 2013 May 15.
9
Design of Ribocomputing Devices for Complex Cellular Logic.
Methods Mol Biol. 2022;2518:65-86. doi: 10.1007/978-1-0716-2421-0_4.
10
Two- and three-input TALE-based AND logic computation in embryonic stem cells.
Nucleic Acids Res. 2013 Nov;41(21):9967-75. doi: 10.1093/nar/gkt758. Epub 2013 Aug 27.

引用本文的文献

1
Small molecule-inducible gene regulatory systems in mammalian cells: progress and design principles.
Curr Opin Biotechnol. 2022 Dec;78:102823. doi: 10.1016/j.copbio.2022.102823. Epub 2022 Oct 27.
2
Single-cell measurement quality in bits.
PLoS One. 2022 Aug 11;17(8):e0269272. doi: 10.1371/journal.pone.0269272. eCollection 2022.
3
Engineering digitizer circuits for chemical and genetic screens in human cells.
Nat Commun. 2021 Oct 22;12(1):6150. doi: 10.1038/s41467-021-26359-9.
5
Comparison of bias and resolvability in single-cell and single-transcript methods.
Commun Biol. 2021 Jun 2;4(1):659. doi: 10.1038/s42003-021-02138-6.
6
Harnessing the central dogma for stringent multi-level control of gene expression.
Nat Commun. 2021 Mar 19;12(1):1738. doi: 10.1038/s41467-021-21995-7.
7
Computer-aided biochemical programming of synthetic microreactors as diagnostic devices.
Mol Syst Biol. 2018 Apr 26;14(4):e7845. doi: 10.15252/msb.20177845.
8
Engineering Diagnostic and Therapeutic Gut Bacteria.
Microbiol Spectr. 2017 Oct;5(5). doi: 10.1128/microbiolspec.BAD-0020-2017.
9
Design Automation in Synthetic Biology.
Cold Spring Harb Perspect Biol. 2017 Apr 3;9(4):a023978. doi: 10.1101/cshperspect.a023978.
10
Editorial - Synthetic Biology: Engineering Complexity and Refactoring Cell Capabilities.
Front Bioeng Biotechnol. 2015 Aug 21;3:120. doi: 10.3389/fbioe.2015.00120. eCollection 2015.

本文引用的文献

1
Bridging the gap: a roadmap to breaking the biological design barrier.
Front Bioeng Biotechnol. 2015 Jan 20;2:87. doi: 10.3389/fbioe.2014.00087. eCollection 2014.
2
Modular construction of mammalian gene circuits using TALE transcriptional repressors.
Nat Chem Biol. 2015 Mar;11(3):207-213. doi: 10.1038/nchembio.1736. Epub 2015 Feb 2.
3
Accurate predictions of genetic circuit behavior from part characterization and modular composition.
ACS Synth Biol. 2015 Jun 19;4(6):673-81. doi: 10.1021/sb500263b. Epub 2014 Nov 17.
5
Model-driven engineering of gene expression from RNA replicons.
ACS Synth Biol. 2015 Jan 16;4(1):48-56. doi: 10.1021/sb500173f. Epub 2014 Jun 6.
6
CRISPR transcriptional repression devices and layered circuits in mammalian cells.
Nat Methods. 2014 Jul;11(7):723-6. doi: 10.1038/nmeth.2969. Epub 2014 May 5.
7
Genomic mining of prokaryotic repressors for orthogonal logic gates.
Nat Chem Biol. 2014 Feb;10(2):99-105. doi: 10.1038/nchembio.1411. Epub 2013 Dec 8.
8
Optobiology: optical control of biological processes via protein engineering.
Biochem Soc Trans. 2013 Oct;41(5):1183-8. doi: 10.1042/BST20130150.
9
SBROME: a scalable optimization and module matching framework for automated biosystems design.
ACS Synth Biol. 2013 May 17;2(5):263-73. doi: 10.1021/sb300095m. Epub 2013 Mar 11.
10
PaR-PaR laboratory automation platform.
ACS Synth Biol. 2013 May 17;2(5):216-22. doi: 10.1021/sb300075t. Epub 2012 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验