Suppr超能文献

决策过程中面对多种选择时的底丘脑核。

The subthalamic nucleus during decision-making with multiple alternatives.

作者信息

Keuken Max C, Van Maanen Leendert, Bogacz Rafal, Schäfer Andreas, Neumann Jane, Turner Robert, Forstmann Birte U

机构信息

Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Prinsengracht 130, Amsterdam, The Netherlands.

Department of Neurophysics, Max-Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig, Germany.

出版信息

Hum Brain Mapp. 2015 Oct;36(10):4041-4052. doi: 10.1002/hbm.22896. Epub 2015 Jul 15.

Abstract

Several prominent neurocomputational models predict that an increase of choice alternatives is modulated by increased activity in the subthalamic nucleus (STN). In turn, increased STN activity allows prolonged accumulation of information. At the same time, areas in the medial frontal cortex such as the anterior cingulate cortex (ACC) and the pre-SMA are hypothesized to influence the information processing in the STN. This study set out to test concrete predictions of STN activity in multiple-alternative decision-making using a multimodal combination of 7 Tesla structural and functional Magnetic Resonance Imaging, and ancestral graph (AG) modeling. The results are in line with the predictions in that increased STN activity was found with an increasing amount of choice alternatives. In addition, our study shows that activity in the ACC is correlated with activity in the STN without directly modulating it. This result sheds new light on the information processing streams between medial frontal cortex and the basal ganglia.

摘要

几个著名的神经计算模型预测,选择项的增加是由丘脑底核(STN)活动的增加所调节的。反过来,STN活动的增加允许信息的长期积累。同时,内侧额叶皮层的区域,如前扣带回皮层(ACC)和前辅助运动区(pre-SMA),被假设会影响STN中的信息处理。本研究旨在使用7特斯拉结构和功能磁共振成像以及祖先图(AG)建模的多模态组合,来测试STN活动在多选项决策中的具体预测。结果与预测一致,即随着选择项数量的增加,发现STN活动增加。此外,我们的研究表明,ACC中的活动与STN中的活动相关,但没有直接调节它。这一结果为内侧额叶皮层和基底神经节之间的信息处理流提供了新的线索。

相似文献

1
The subthalamic nucleus during decision-making with multiple alternatives.
Hum Brain Mapp. 2015 Oct;36(10):4041-4052. doi: 10.1002/hbm.22896. Epub 2015 Jul 15.
4
Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response.
Neuroimage. 2012 Mar;60(1):370-5. doi: 10.1016/j.neuroimage.2011.12.044. Epub 2011 Dec 28.
6
Role of individual basal ganglia nuclei in force amplitude generation.
J Neurophysiol. 2007 Aug;98(2):821-34. doi: 10.1152/jn.00239.2007. Epub 2007 Jun 13.
7
Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making.
Neural Netw. 2006 Oct;19(8):1120-36. doi: 10.1016/j.neunet.2006.03.006. Epub 2006 Sep 1.
10
Connectivity and Dynamics Underlying Synaptic Control of the Subthalamic Nucleus.
J Neurosci. 2019 Mar 27;39(13):2470-2481. doi: 10.1523/JNEUROSCI.1642-18.2019. Epub 2019 Jan 30.

引用本文的文献

1
Subthalamic stimulation causally modulates human voluntary decision-making to stay or go.
NPJ Parkinsons Dis. 2024 Nov 2;10(1):210. doi: 10.1038/s41531-024-00807-x.
2
Probabilistic causal reasoning under time pressure.
PLoS One. 2024 Apr 11;19(4):e0297011. doi: 10.1371/journal.pone.0297011. eCollection 2024.
3
Degenerate boundaries for multiple-alternative decisions.
Nat Commun. 2022 Aug 29;13(1):5066. doi: 10.1038/s41467-022-32741-y.
6
Event-related deep brain stimulation of the subthalamic nucleus affects conflict processing.
Ann Neurol. 2018 Oct;84(4):515-526. doi: 10.1002/ana.25312. Epub 2018 Sep 26.
7
Having More Choices Changes How Human Observers Weight Stable Sensory Evidence.
J Neurosci. 2018 Oct 3;38(40):8635-8649. doi: 10.1523/JNEUROSCI.0440-18.2018. Epub 2018 Aug 24.
8
The Connectivity Fingerprint of the Human Frontal Cortex, Subthalamic Nucleus, and Striatum.
Front Neuroanat. 2018 Jul 19;12:60. doi: 10.3389/fnana.2018.00060. eCollection 2018.
9
Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging.
Brain Topogr. 2018 Jul;31(4):513-545. doi: 10.1007/s10548-018-0638-7. Epub 2018 Mar 2.
10
Comparing functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T.
Hum Brain Mapp. 2017 Jun;38(6):3226-3248. doi: 10.1002/hbm.23586. Epub 2017 Mar 27.

本文引用的文献

1
Multi-modal ultra-high resolution structural 7-Tesla MRI data repository.
Sci Data. 2014 Dec 9;1:140050. doi: 10.1038/sdata.2014.50. eCollection 2014.
2
The subcortical cocktail problem; mixed signals from the subthalamic nucleus and substantia nigra.
PLoS One. 2015 Mar 20;10(3):e0120572. doi: 10.1371/journal.pone.0120572. eCollection 2015.
3
The impact of MRI scanner environment on perceptual decision-making.
Behav Res Methods. 2016 Mar;48(1):184-200. doi: 10.3758/s13428-015-0563-6.
4
fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning.
J Neurosci. 2015 Jan 14;35(2):485-94. doi: 10.1523/JNEUROSCI.2036-14.2015.
5
Brain networks of perceptual decision-making: an fMRI ALE meta-analysis.
Front Hum Neurosci. 2014 Jun 19;8:445. doi: 10.3389/fnhum.2014.00445. eCollection 2014.
6
The speed-accuracy tradeoff: history, physiology, methodology, and behavior.
Front Neurosci. 2014 Jun 11;8:150. doi: 10.3389/fnins.2014.00150. eCollection 2014.
7
Midline frontal cortex low-frequency activity drives subthalamic nucleus oscillations during conflict.
J Neurosci. 2014 May 21;34(21):7322-33. doi: 10.1523/JNEUROSCI.1169-14.2014.
8
Quantifying inter-individual anatomical variability in the subcortex using 7 T structural MRI.
Neuroimage. 2014 Jul 1;94:40-46. doi: 10.1016/j.neuroimage.2014.03.032. Epub 2014 Mar 17.
9
A neural mechanism underlying failure of optimal choice with multiple alternatives.
Nat Neurosci. 2014 Mar;17(3):463-70. doi: 10.1038/nn.3649. Epub 2014 Feb 9.
10
Early evidence affects later decisions: why evidence accumulation is required to explain response time data.
Psychon Bull Rev. 2014 Jun;21(3):777-84. doi: 10.3758/s13423-013-0551-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验