Suppr超能文献

用于电化学分析的具有集成皱纹金微/纳米纹理电极的微流控器件的快速成型

Rapid prototyping of microfluidic devices with integrated wrinkled gold micro-/nano textured electrodes for electrochemical analysis.

作者信息

Gabardo C M, Adams-McGavin R C, Vanderfleet O M, Soleymani L

机构信息

School of Biomedical Engineering, McMaster University, 1280 Main St. West, Hamilton, Canada.

出版信息

Analyst. 2015 Aug 21;140(16):5781-8. doi: 10.1039/c5an00774g.

Abstract

Fully-integrated electro-fluidic systems with micro-/nano-scale features have a wide range of applications in lab-on-a-chip systems used for biosensing, biological sample processing, and environmental monitoring. Rapid prototyping of application-specific electro-fluidic systems is envisioned to facilitate the testing, validation, and market translation of several lab-on-a-chip systems. Towards this goal, we developed a rapid prototyping process for creating wrinkled micro-/nano-textured electrodes on shrink memory polymers, fabricating microfluidics using molds patterned by a craft-cutter, and bonding electrical and fluidic circuitries using a PDMS partial curing method optimized for creating void-free bonds at the side walls and surfaces of tall (>5 μm) micro-/nano-textured wrinkled electrodes. The resulting electro-fluidic devices, featuring closely spaced high topography electrodes for electrochemical analysis, can withstand flow-rates and burst pressures larger than 25 mL min(-1) and 125 kPa, respectively. In addition, the fully-integrated electrochemical flow-cell developed here demonstrates excellent electrochemical behaviour, with negligible scan to scan variation for over 100 cyclic voltammetry scans, and expected redox signatures measured under various voltage scan rates and fluidic flow rates.

摘要

具有微纳尺度特征的全集成电流体系统在用于生物传感、生物样品处理和环境监测的芯片实验室系统中有广泛应用。设想特定应用电流体系统的快速原型制作将有助于多种芯片实验室系统的测试、验证及推向市场。为实现这一目标,我们开发了一种快速原型制作工艺,用于在收缩记忆聚合物上创建有褶皱的微纳纹理电极,使用工艺切割机制作的模具制造微流体,并使用一种PDMS部分固化方法将电气和流体电路进行键合,该方法经过优化,可在高(>5μm)微纳纹理褶皱电极的侧壁和表面创建无空隙键合。由此产生的电流体装置具有用于电化学分析的紧密间隔的高形貌电极,可分别承受大于25 mL min⁻¹和125 kPa的流速和爆破压力。此外,这里开发的全集成电化学流通池展示出优异的电化学行为,在超过100次循环伏安扫描中扫描间变化可忽略不计,并且在各种电压扫描速率和流体流速下测量到预期的氧化还原特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验