Suppr超能文献

用于微流控器件和高压注射的快速原型聚合物。

Rapid prototyping polymers for microfluidic devices and high pressure injections.

机构信息

Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA.

出版信息

Lab Chip. 2011 Nov 21;11(22):3752-65. doi: 10.1039/c1lc20514e. Epub 2011 Oct 7.

Abstract

Multiple methods of fabrication exist for microfluidic devices, with different advantages depending on the end goal of industrial mass production or rapid prototyping for the research laboratory. Polydimethylsiloxane (PDMS) has been the mainstay for rapid prototyping in the academic microfluidics community, because of its low cost, robustness and straightforward fabrication, which are particularly advantageous in the exploratory stages of research. However, despite its many advantages and its broad use in academic laboratories, its low elastic modulus becomes a significant issue for high pressure operation as it leads to a large alteration of channel geometry. Among other consequences, such deformation makes it difficult to accurately predict the flow rates in complex microfluidic networks, change flow speed quickly for applications in stop-flow lithography, or to have predictable inertial focusing positions for cytometry applications where an accurate alignment of the optical system is critical. Recently, other polymers have been identified as complementary to PDMS, with similar fabrication procedures being characteristic of rapid prototyping but with higher rigidity and better resistance to solvents; Thermoset Polyester (TPE), Polyurethane Methacrylate (PUMA) and Norland Adhesive 81 (NOA81). In this review, we assess these different polymer alternatives to PDMS for rapid prototyping, especially in view of high pressure injections with the specific example of inertial flow conditions. These materials are compared to PDMS, for which magnitudes of deformation and dynamic characteristics are also characterized. We provide a complete and systematic analysis of these materials with side-by-side experiments conducted in our lab that also evaluate other properties, such as biocompatibility, solvent compatibility, and ease of fabrication. We emphasize that these polymer alternatives, TPE, PUMA and NOA, have some considerable strengths for rapid prototyping when bond strength, predictable operation at high pressure, or transitioning to commercialization are considered important for the application.

摘要

存在多种制造微流控设备的方法,具体取决于大规模工业化生产的最终目标或研究实验室的快速原型制作。聚二甲基硅氧烷 (PDMS) 一直是学术微流控领域快速原型制作的主流,因为其成本低、坚固耐用且易于制造,这在研究的探索阶段尤为有利。然而,尽管它有许多优点,并且在学术实验室中得到了广泛的应用,但它的低弹性模量在高压操作中成为一个重大问题,因为它会导致通道几何形状发生很大的变化。除其他后果外,这种变形使得难以准确预测复杂微流控网络中的流量,无法快速改变用于停流光刻的流速,或者对于细胞术应用而言无法获得可预测的惯性聚焦位置,因为在细胞术应用中光学系统的精确对准至关重要。最近,人们发现了其他与 PDMS 互补的聚合物,它们具有类似的快速原型制作工艺,但刚性更高,对溶剂的抵抗力更强;热固性聚酯 (TPE)、聚氨基甲酸乙酯甲基丙烯酸酯 (PUMA) 和诺兰德胶 81 (NOA81)。在这篇综述中,我们评估了这些不同的 PDMS 快速原型制作替代聚合物,特别是考虑到具有特定惯性流条件的高压注射。我们将这些材料与 PDMS 进行了比较,还对 PDMS 的变形幅度和动态特性进行了特征描述。我们对这些材料进行了全面而系统的分析,在我们的实验室中进行了并排实验,这些实验还评估了其他特性,如生物相容性、溶剂相容性和易于制造。我们强调,在考虑键合强度、高压下可预测运行或向商业化过渡对于应用很重要的情况下,这些聚合物替代品 TPE、PUMA 和 NOA 在快速原型制作方面具有一些相当大的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验