Suppr超能文献

铵吸附和氨对亚硝酸盐氧化细菌的抑制作用解释了土壤N2O产生的差异。

Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production.

作者信息

Venterea Rodney T, Clough Timothy J, Coulter Jeffrey A, Breuillin-Sessoms Florence, Wang Ping, Sadowsky Michael J

机构信息

1] USDA-ARS, Soil and Water Management Research Unit, St. Paul, MN 55108 [2] Dep. of Soil, Water, and Climate, Univ. of Minnesota, St. Paul, MN 55108.

Faculty of Agriculture and Life Science, Lincoln Univ., PO Box 85084, Lincoln 7647, Canterbury, New Zealand.

出版信息

Sci Rep. 2015 Jul 16;5:12153. doi: 10.1038/srep12153.

Abstract

Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4(+)) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3(-)) levels than soil L, but was more resistant to nitrite (NO2(-)) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2(-) oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2(-) was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2(-). Differences between soils were explained by greater slNH3 in soil L which inhibited NO2(-) oxidization leading to greater NO2(-) levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2(-), N2O and nitrifier genes, and the first to show how ASC can regulate NO2(-) levels and N2O production.

摘要

为了改进减排策略和排放模型,需要更好地了解尿液影响的“热点”和肥料带中一氧化二氮(N2O)产生的过程控制。在用牛(Bos taurus)尿液(Bu)或尿素(Ur)改良后,我们测量了两种质地、pH值、碳(C)和碳氮比(C/N)相似的土壤(“L”和“W”)中的无机氮、pH值、N2O以及与硝化作用相关的基因。还计算了考虑非线性铵(NH4(+))吸附容量(ASC)的溶液相氨(slNH3)。土壤W的硝化速率和硝酸盐(NO3(-))水平高于土壤L,但对亚硝酸盐(NO2(-))积累的抗性更强,产生的N2O比土壤L少两到十倍。与NO2(-)氧化相关的基因(nxrA)在土壤W中大幅增加,但在土壤L中保持不变。土壤NO2(-)与N2O产生密切相关,累积(c-)slNH3解释了c-NO2(-)中87%的变异。土壤间的差异是由于土壤L中较高的slNH3抑制了NO2(-)氧化,导致更高的NO2(-)水平和N2O产生。这是第一项将土壤slNH3、NO2(-)、N2O和硝化细菌基因的动态联系起来的研究,也是第一项展示ASC如何调节NO2(-)水平和N2O产生的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19b6/4503984/af7b2ad3d9ab/srep12153-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验