Department of Plant, Soil and Microbial Sciences and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA.
W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA.
Glob Chang Biol. 2021 Nov;27(21):5599-5613. doi: 10.1111/gcb.15833. Epub 2021 Aug 30.
The long-term contribution of nitrification to nitrous oxide (N O) emissions from terrestrial ecosystems is poorly known and thus poorly constrained in biogeochemical models. Here, using Bayesian inference to couple 25 years of in situ N O flux measurements with site-specific Michaelis-Menten kinetics of nitrification-derived N O, we test the relative importance of nitrification-derived N O across six cropped and unmanaged ecosystems along a management intensity gradient in the U.S. Midwest. We found that the maximum potential contribution from nitrification to in situ N O fluxes was 13%-17% in a conventionally fertilized annual cropping system, 27%-42% in a low-input cover-cropped annual cropping system, and 52%-63% in perennial systems including a late successional deciduous forest. Actual values are likely to be <10% of these values because of low N O yields in cultured nitrifiers (typically 0.04%-8% of NH oxidized) and competing sinks for available in situ. Most nitrification-derived N O was produced by ammonia-oxidizing bacteria rather than archaea, who appeared responsible for no more than 30% of nitrification-derived N O production in all but one ecosystem. Although the proportion of nitrification-derived N O production was lowest in annual cropping systems, these ecosystems nevertheless produced more nitrification-derived N O (higher V ) than perennial and successional ecosystems. We conclude that nitrification is minor relative to other sources of N O in all ecosystems examined.
硝化作用对陆地生态系统中氧化亚氮(N O)排放的长期贡献知之甚少,因此在生物地球化学模型中受到的限制也很少。在这里,我们使用贝叶斯推理将 25 年的原位 N O通量测量与特定地点的硝化衍生 N O 的米氏动力学相结合,测试了硝化衍生 N O在沿美国中西部管理强度梯度的六个种植和未管理生态系统中的相对重要性。我们发现,在传统施肥的一年生作物系统中,硝化作用对原位 N O通量的最大潜在贡献为 13%-17%,在低投入覆盖作物的一年生作物系统中为 27%-42%,在包括演替后期落叶林的多年生系统中为 52%-63%。由于培养硝化菌的 N O产量较低(通常为氧化的 NH 的 0.04%-8%)以及原位可利用的竞争汇,实际值可能低于这些值的 10%。大部分硝化衍生的 N O是由氨氧化细菌产生的,而不是古菌,除了一个生态系统外,古菌在所有生态系统中产生的硝化衍生 N O不到 30%。尽管硝化作用在一年生作物系统中的贡献最小,但这些系统产生的硝化衍生 N O(更高的 V )却多于多年生和演替生态系统。我们得出的结论是,在所有受检的生态系统中,硝化作用相对于其他 N O来源都较小。