Lobach Iryna, Fan Ruzong
Department of Population Health, Division of Biostatistics, School of Medicine, New York University, New York, NY 10016, USA.
Biostatistics and Bioinformatics Branch, Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852, USA.
J Probab Stat. 2012;2012. doi: 10.1155/2012/151259.
A key component to understanding etiology of complex diseases, such as cancer, diabetes, alcohol dependence, is to investigate gene-environment interactions. This work is motivated by the following two concerns in the analysis of gene-environment interactions. First, multiple genetic markers in moderate linkage disequilibrium may be involved in susceptibility to a complex disease. Second, environmental factors may be subject to misclassification. We develop a genotype based Bayesian pseudolikelihood approach that accommodates linkage disequilibrium in genetic markers and misclassification in environmental factors. Since our approach is genotype based, it allows the observed genetic information to enter the model directly thus eliminating the need to infer haplotype phase and simplifying computations. Bayesian approach allows shrinking parameter estimates towards prior distribution to improve estimation and inference when environmental factors are subject to misclassification. Simulation experiments demonstrated that our method produced parameter estimates that are nearly unbiased even for small sample sizes. An application of our method is illustrated using a case-control study of interaction between early onset of drinking and genes involved in dopamine pathway.
理解诸如癌症、糖尿病、酒精依赖等复杂疾病病因的一个关键要素是研究基因与环境的相互作用。这项工作是由基因 - 环境相互作用分析中的以下两个问题所推动的。首先,处于中度连锁不平衡状态的多个遗传标记可能与复杂疾病的易感性有关。其次,环境因素可能会被错误分类。我们开发了一种基于基因型的贝叶斯伪似然方法,该方法考虑了遗传标记中的连锁不平衡以及环境因素中的错误分类。由于我们的方法是基于基因型的,它允许直接将观察到的遗传信息纳入模型,从而无需推断单倍型相位并简化了计算。贝叶斯方法允许在环境因素存在错误分类时,将参数估计值向先验分布收缩,以改进估计和推断。模拟实验表明,即使对于小样本量,我们的方法产生的参数估计也几乎是无偏的。使用一项关于饮酒早发与多巴胺途径相关基因之间相互作用的病例对照研究说明了我们方法的应用。