Suppr超能文献

基于基因型的复杂疾病关联分析:具有多个遗传标记的基因-环境相互作用以及环境暴露测量误差。

Genotype-based association mapping of complex diseases: gene-environment interactions with multiple genetic markers and measurement error in environmental exposures.

机构信息

Division of Biostatistics, New York University, School of Medicine, New York, New York, USA.

出版信息

Genet Epidemiol. 2010 Dec;34(8):792-802. doi: 10.1002/gepi.20523.

Abstract

With the advent of dense single nucleotide polymorphism genotyping, population-based association studies have become the major tools for identifying human disease genes and for fine gene mapping of complex traits. We develop a genotype-based approach for association analysis of case-control studies of gene-environment interactions in the case when environmental factors are measured with error and genotype data are available on multiple genetic markers. To directly use the observed genotype data, we propose two genotype-based models: genotype effect and additive effect models. Our approach offers several advantages. First, the proposed risk functions can directly incorporate the observed genotype data while modeling the linkage disequilibrium information in the regression coefficients, thus eliminating the need to infer haplotype phase. Compared with the haplotype-based approach, an estimating procedure based on the proposed methods can be much simpler and significantly faster. In addition, there is no potential risk due to haplotype phase estimation. Further, by fitting the proposed models, it is possible to analyze the risk alleles/variants of complex diseases, including their dominant or additive effects. To model measurement error, we adopt the pseudo-likelihood method by Lobach et al. [2008]. Performance of the proposed method is examined using simulation experiments. An application of our method is illustrated using a population-based case-control study of association between calcium intake with the risk of colorectal adenoma development.

摘要

随着密集单核苷酸多态性基因分型的出现,基于人群的关联研究已成为鉴定人类疾病基因和复杂性状精细基因定位的主要工具。当环境因素存在测量误差且存在多个遗传标记的基因型数据时,我们开发了一种基于基因型的方法,用于基因-环境相互作用的病例对照研究的关联分析。为了直接使用观察到的基因型数据,我们提出了两种基于基因型的模型:基因型效应和加性效应模型。我们的方法具有几个优点。首先,所提出的风险函数可以直接整合观察到的基因型数据,同时对回归系数中的连锁不平衡信息进行建模,从而消除了推断单倍型相位的需要。与基于单倍型的方法相比,基于所提出的方法的估计过程可以更简单且显著更快。此外,由于单倍型相位估计,不存在潜在风险。此外,通过拟合所提出的模型,可以分析复杂疾病的风险等位基因/变体,包括它们的显性或加性效应。为了模拟测量误差,我们采用了 Lobach 等人[2008]提出的伪似然方法。通过模拟实验检验了所提出方法的性能。我们的方法的一个应用是使用基于人群的病例对照研究,研究钙摄入量与结直肠腺瘤发展风险之间的关联。

相似文献

3
Retrospective analysis of haplotype-based case control studies under a flexible model for gene environment association.
Biostatistics. 2008 Jan;9(1):81-99. doi: 10.1093/biostatistics/kxm011. Epub 2007 May 8.
7
Incorporating single-locus tests into haplotype cladistic analysis in case-control studies.
PLoS Genet. 2007 Mar 23;3(3):e46. doi: 10.1371/journal.pgen.0030046.
8
9
Quantifying the amount of missing information in genetic association studies.
Genet Epidemiol. 2006 Dec;30(8):703-17. doi: 10.1002/gepi.20181.

引用本文的文献

1
Exposure Enriched Case-Control (EECC) Design for the Assessment of Gene-Environment Interaction.
Genet Epidemiol. 2016 Nov;40(7):570-578. doi: 10.1002/gepi.21986. Epub 2016 Jun 17.
2
Tests for Gene-Environment Interactions and Joint Effects With Exposure Misclassification.
Am J Epidemiol. 2016 Feb 1;183(3):237-47. doi: 10.1093/aje/kwv198. Epub 2016 Jan 10.
5
Clock gene variants differentiate mood disorders.
Mol Biol Rep. 2015 Jan;42(1):277-88. doi: 10.1007/s11033-014-3770-9. Epub 2014 Sep 26.
7
Invited commentary: GE-Whiz! Ratcheting gene-environment studies up to the whole genome and the whole exposome.
Am J Epidemiol. 2012 Feb 1;175(3):203-7; discussion 208-9. doi: 10.1093/aje/kwr365. Epub 2011 Dec 22.

本文引用的文献

1
Observational epidemiologic studies of nutrition and cancer: the next generation (with better observation).
Cancer Epidemiol Biomarkers Prev. 2009 Apr;18(4):1026-32. doi: 10.1158/1055-9965.EPI-08-1129. Epub 2009 Mar 31.
4
A second generation human haplotype map of over 3.1 million SNPs.
Nature. 2007 Oct 18;449(7164):851-61. doi: 10.1038/nature06258.
5
A comparison of phasing algorithms for trios and unrelated individuals.
Am J Hum Genet. 2006 Mar;78(3):437-50. doi: 10.1086/500808. Epub 2006 Jan 26.
6
A haplotype map of the human genome.
Nature. 2005 Oct 27;437(7063):1299-320. doi: 10.1038/nature04226.
7
High-resolution association mapping of quantitative trait loci: a population-based approach.
Genetics. 2006 Jan;172(1):663-86. doi: 10.1534/genetics.105.046417. Epub 2005 Sep 19.
9
Whole-genome patterns of common DNA variation in three human populations.
Science. 2005 Feb 18;307(5712):1072-9. doi: 10.1126/science.1105436.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验