Xie Yuxiang, Zhou Bing, Lin Mei-Yao, Wang Shiwei, Foust Kevin D, Sheng Zu-Hang
Synaptic Functions Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
Department of Neuroscience, Ohio State University, 698 BRT, 460 West 12th Avenue, Columbus, OH 43210, USA.
Neuron. 2015 Jul 15;87(2):355-70. doi: 10.1016/j.neuron.2015.06.026.
One pathological hallmark in ALS motor neurons (MNs) is axonal accumulation of damaged mitochondria. A fundamental question remains: does reduced degradation of those mitochondria by an impaired autophagy-lysosomal system contribute to mitochondrial pathology? We reveal MN-targeted progressive lysosomal deficits accompanied by impaired autophagic degradation beginning at asymptomatic stages in fALS-linked hSOD1(G93A) mice. Lysosomal deficits result in accumulation of autophagic vacuoles engulfing damaged mitochondria along MN axons. Live imaging of spinal MNs from the adult disease mice demonstrates impaired dynein-driven retrograde transport of late endosomes (LEs). Expressing dynein-adaptor snapin reverses transport defects by competing with hSOD1(G93A) for binding dynein, thus rescuing autophagy-lysosomal deficits, enhancing mitochondrial turnover, improving MN survival, and ameliorating the disease phenotype in hSOD1(G93A) mice. Our study provides a new mechanistic link for hSOD1(G93A)-mediated impairment of LE transport to autophagy-lysosomal deficits and mitochondrial pathology. Understanding these early pathological events benefits development of new therapeutic interventions for fALS-linked MN degeneration.
肌萎缩侧索硬化症(ALS)运动神经元(MNs)的一个病理特征是受损线粒体在轴突中积累。一个基本问题仍然存在:自噬-溶酶体系统受损导致这些线粒体降解减少是否会导致线粒体病理变化?我们发现,在与家族性ALS(fALS)相关的hSOD1(G93A)小鼠的无症状阶段,MN靶向的进行性溶酶体缺陷伴随着自噬降解受损。溶酶体缺陷导致自噬空泡在MN轴突中积累,吞噬受损线粒体。对成年患病小鼠脊髓MNs的实时成像显示,动力蛋白驱动的晚期内体(LEs)逆行运输受损。表达动力蛋白衔接蛋白snapin可通过与hSOD1(G93A)竞争结合动力蛋白来逆转运输缺陷,从而挽救自噬-溶酶体缺陷,增强线粒体更新,改善MN存活,并改善hSOD1(G93A)小鼠的疾病表型。我们的研究为hSOD1(G93A)介导的LE运输受损与自噬-溶酶体缺陷和线粒体病理变化之间提供了新的机制联系。了解这些早期病理事件有助于开发针对fALS相关MN变性的新治疗干预措施。