Liang Weiwei, Zhang Chunting, Wang Di, Su Xiaoli, Tan Xingli, Yang Yueqing, Cong Chaohua, Wang Ying, Huo Di, Wang Hongyong, Wang Shuyu, Wang Xudong, Feng Honglin
Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China.
Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China.
CNS Neurosci Ther. 2025 Mar;31(3):e70341. doi: 10.1111/cns.70341.
Autophagic impairment has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Salt-inducible kinase 2 (SIK2), a member of the AMP-activated protein kinase (AMPK) family widely expressed in the central nervous system, plays critical roles in neuronal survival, neurogenesis, and the regulation of autophagy. This study aims to investigate the effects and underlying mechanisms of SIK2 in the pathogenesis of ALS.
In our work, we used both in vivo and in vitro models of ALS to study the effect of SIK2. Protein and RNA levels were assessed by Western blot, RT-qPCR, immunofluorescence, and immunohistochemistry. Cell viability and apoptosis were evaluated using CCK-8 assay and flow cytometry. Transmission electron microscopy was employed to examine autophagic vacuoles. Additionally, lentivirus particles carrying shRNA targeting SIK2 (sh-SIK2) were injected into the lateral ventricle of ALS mice at 60 days of age. Motor performance was evaluated by the rotarod test.
We observed that increased expression of SIK2 significantly contributed to the degeneration of motor neurons in both the cellular model and the hSOD1 transgenic mice model of ALS. SIK2 knockdown enhanced neuronal survival and restored mTORC1 activity. Furthermore, SIK2 suppression facilitated the clearance of mutant SOD1 accumulation by activating autophagic flux and enhancing lysosomal acidification. Conversely, SIK2 overexpression impaired mTORC1 activity, exacerbating autophagy dysfunction by inhibiting lysosomal function, and ultimately led to motor neuron degeneration. In vivo, SIK2 deficiency delayed disease onset and extended the lifespan of ALS mice by enhancing autophagy-mediated clearance of mutant SOD1 aggregates.
Our findings reveal that SIK2 regulates autophagic flux by modulating lysosomal acidification, thereby influencing the degradation of mutant SOD1 aggregates. SIK2 suppression enhances autophagy-mediated clearance of toxic protein aggregates and protects motor neurons, highlighting its potential as a therapeutic target for ALS.
自噬功能障碍与肌萎缩侧索硬化症(ALS)的发病机制有关。盐诱导激酶2(SIK2)是AMP激活蛋白激酶(AMPK)家族的成员,在中枢神经系统中广泛表达,在神经元存活、神经发生和自噬调节中起关键作用。本研究旨在探讨SIK2在ALS发病机制中的作用及潜在机制。
在我们的研究中,我们使用了ALS的体内和体外模型来研究SIK2的作用。通过蛋白质印迹、RT-qPCR、免疫荧光和免疫组织化学评估蛋白质和RNA水平。使用CCK-8测定法和流式细胞术评估细胞活力和凋亡。采用透射电子显微镜检查自噬泡。此外,在60日龄时将携带靶向SIK2的shRNA(sh-SIK2)的慢病毒颗粒注射到ALS小鼠的侧脑室中。通过转棒试验评估运动性能。
我们观察到,SIK2表达增加显著促进了ALS细胞模型和hSOD1转基因小鼠模型中运动神经元的退化。敲低SIK2可提高神经元存活率并恢复mTORC1活性。此外,抑制SIK2通过激活自噬流和增强溶酶体酸化促进突变型SOD1积聚的清除。相反,SIK2过表达损害mTORC1活性,通过抑制溶酶体功能加剧自噬功能障碍,最终导致运动神经元退化。在体内,SIK2缺乏通过增强自噬介导的突变型SOD1聚集体清除来延迟疾病发作并延长ALS小鼠的寿命。
我们的研究结果表明,SIK2通过调节溶酶体酸化来调节自噬流,从而影响突变型SOD1聚集体的降解。抑制SIK2可增强自噬介导的有毒蛋白质聚集体清除并保护运动神经元,突出了其作为ALS治疗靶点的潜力。