Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of ASIC & System, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , Shanghai 200433, P. R. China.
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, P. R. China.
J Am Chem Soc. 2015 Oct 21;137(41):13282-9. doi: 10.1021/jacs.5b05619. Epub 2015 Jul 31.
Core-shell magnetic mesoporous silica microspheres (Magn-MSMs) with tunable large mesopores in the shell are highly desired in biocatalysis, magnetic bioseparation, and enrichment. In this study, a shearing assisted interface coassembly in n-hexane/water biliquid systems is developed to synthesize uniform Magn-MSMs with magnetic core and mesoporous silica shell for an efficient size-selective biocatalysis. The synthesis features the rational control over the electrostatic interaction among cationic surfactant molecules, silicate oligomers, and Fe3O4@RF microspheres (RF: resorcinol formaldehyde) in the presence of shearing-regulated solubilization of n-hexane in surfactant micelles. Through this multicomponent interface coassembly, surfactant-silica mesostructured composite has been uniformly deposited on the Fe3O4@RF microspheres, and core-shell Magn-MSMs are obtained after removing the surfactant and n-hexane. The obtained Magn-MSMs possess excellent water dispersibility, uniform diameter (600 nm), large and tunable perpendicular mesopores (5.0-9.0 nm), high surface area (498-623 m(2)/g), large pore volume (0.91-0.98 cm(3)/g), and high magnetization (34.5-37.1 emu/g). By utilization of their large and open mesopores, Magn-MSMs with a pore size of about 9.0 nm have been demonstrated to be able to immobilize a large bioenzyme (trypsin with size of 4.0 nm) with a high loading capacity of ∼97 μg/mg via chemically binding. Magn-MSMs with immobilized trypsin exhibit an excellent convenient and size selective enzymolysis of low molecular proteins in the mixture of proteins of different sizes and a good recycling performance by using the magnetic separability of the microspheres.
具有壳层中可调大介孔的核壳型磁性介孔硅微球(Magn-MSMs)在生物催化、磁性生物分离和富集中具有很高的应用价值。在本研究中,我们在正己烷/水双液相体系中发展了一种剪切辅助界面共组装方法,用于合成具有磁性核和介孔硅壳的均匀的 Magn-MSMs,以实现高效的尺寸选择性生物催化。该合成方法的特点是通过剪切调控正己烷在表面活性剂胶束中的溶解,合理控制阳离子表面活性剂分子、硅酸盐低聚物和 Fe3O4@RF 微球(RF:间苯二酚-甲醛)之间的静电相互作用。通过这种多组分界面共组装,表面活性剂-硅介孔结构复合均匀地沉积在 Fe3O4@RF 微球上,经过去除表面活性剂和正己烷后得到核壳型 Magn-MSMs。所得的 Magn-MSMs 具有良好的水分散性、均匀的直径(600nm)、大且可调的垂直介孔(5.0-9.0nm)、高比表面积(498-623m2/g)、大孔体积(0.91-0.98cm3/g)和高磁化强度(34.5-37.1emu/g)。利用其大而开放的介孔,孔径约为 9.0nm 的 Magn-MSMs 能够通过化学结合固定大量生物酶(尺寸为 4.0nm 的胰蛋白酶),固定载量约为 97μg/mg。固定有胰蛋白酶的 Magn-MSMs 在不同大小蛋白质混合物中表现出优异的、方便的、尺寸选择性的低分子蛋白酶解作用,以及通过微球的磁分离性能表现出良好的循环使用性能。
ACS Appl Mater Interfaces. 2019-3-5
Anal Chim Acta. 2017-7-12
J Am Chem Soc. 2017-3-22