Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University , Shanghai 200433, China.
Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University , Shanghai 200433, China.
J Am Chem Soc. 2017 Nov 1;139(43):15486-15493. doi: 10.1021/jacs.7b09055. Epub 2017 Oct 23.
Yolk-shell nanomaterials with a rattle-like structure have been considered ideal carriers and nanoreactors. Traditional methods to constructing yolk-shell nanostructures mainly rely on multistep sacrificial template strategy. In this study, a facile and effective plasmolysis-inspired nanoengineering strategy is developed to controllably fabricate yolk-shell magnetic mesoporous silica microspheres via the swelling-shrinkage of resorcinol-formaldehyde (RF) upon soaking in or removal of n-hexane. Using FeO@RF microspheres as seeds, surfactant-silica mesostructured composite is deposited on the swelled seeds through the multicomponent interface coassembly, followed by solvent extraction to remove surfactant and simultaneously induce shrinkage of RF shell. The obtained yolk-shell microspheres (FeO@RF@void@mSiO) possess a high magnetization of 40.3 emu/g, high surface area (439 m/g), radially aligned mesopores (5.4 nm) in the outer shell, tunable middle hollow space (472-638 nm in diameter), and a superparamagnetic core. This simple method allows a simultaneous encapsulation of Au nanoparticles into the hollow space during synthesis, and it leads to spherical FeO@RF@void-Au@mSiO magnetic nanocatalysts, which show excellent catalysis efficiency for hydrogenation of 4-nitrophenol by NaBH with a high conversion rate (98%) and magnetic recycling stability.
具有类摇瓶结构的蛋黄壳纳米材料被认为是理想的载体和纳米反应器。传统的构建蛋黄壳纳米结构的方法主要依赖于多步牺牲模板策略。在这项研究中,开发了一种简便有效的质壁分离启发式纳加工策略,通过在正己烷中浸泡或去除来控制地制备蛋黄壳型磁性介孔硅微球。用 FeO@RF 微球作为种子,通过多组分界面共组装在溶胀的种子上沉积表面活性剂-硅介孔结构复合材料,然后通过溶剂萃取去除表面活性剂并同时诱导 RF 壳的收缩。所得的蛋黄壳微球 (FeO@RF@void@mSiO) 具有高的磁矩 (40.3 emu/g)、高的比表面积 (439 m/g)、在外壳中具有径向排列的介孔 (5.4nm)、可调节的中间中空空间 (472-638nm 直径) 和超顺磁核。这种简单的方法允许在合成过程中同时将金纳米粒子封装在中空空间中,得到的球形 FeO@RF@void-Au@mSiO 磁性纳米催化剂对 4-硝基苯酚的氢化反应具有优异的催化效率,转化率高达 98%,并且具有磁性回收稳定性。