Suppr超能文献

一个大小结构种群模型及其阶段结构对应模型的稳定性模式。

Stability patterns for a size-structured population model and its stage-structured counterpart.

作者信息

Zhang Lai, Pedersen Michael, Lin Zhigui

机构信息

Department of Mathematics and Mathematical Statistics, Umeå University, SE-90187 Umeå, Sweden.

Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800, Denmark.

出版信息

Math Biosci. 2015 Sep;267:109-23. doi: 10.1016/j.mbs.2015.06.014. Epub 2015 Jul 14.

Abstract

In this paper we compare a general size-structured population model, where a size-structured consumer feeds upon an unstructured resource, to its simplified stage-structured counterpart in terms of equilibrium stability. Stability of the size-structured model is understood in terms of an equivalent delayed system consisting of a renewal equation for the consumer population birth rate and a delayed differential equation for the resource. Results show that the size- and stage-structured models differ considerably with respect to equilibrium stability, although the two models have completely identical equilibrium solutions. First, when adult consumers are superior foragers to juveniles, the size-structured model is more stable than the stage-structured model while the opposite occurs when juveniles are the superior foragers. Second, relatively large juvenile (adult) mortality tends to stabilise (destabilise) the size-structured model but destabilise (stabilise) the stage-structured model. Third, the stability pattern is sensitive to the adult-offspring size ratio in the size-structured model but much less sensitive in the stage-structured model. Finally, unless the adult-offspring size ratio is sufficiently small, the stage-structured model cannot satisfactorily capture the dynamics of the size-structured model. We conclude that caution must be taken when the stage-structured population model is applied, although it can consistently translate individual life history and stage-specific differences to the population level.

摘要

在本文中,我们就平衡稳定性方面,将一个一般的体型结构种群模型(其中一个体型结构的消费者以一个非结构资源为食)与其简化的阶段结构对应模型进行了比较。体型结构模型的稳定性是根据一个由消费者种群出生率的更新方程和一个资源的延迟微分方程组成的等效延迟系统来理解的。结果表明,尽管这两个模型具有完全相同的平衡解,但体型结构模型和阶段结构模型在平衡稳定性方面有很大差异。首先,当成体消费者比幼体更善于觅食时,体型结构模型比阶段结构模型更稳定,而当幼体是更善于觅食者时则相反。其次,相对较高的幼体(成体)死亡率往往会使体型结构模型稳定(不稳定),但会使阶段结构模型不稳定(稳定)。第三,稳定性模式在体型结构模型中对成体与幼体的体型比敏感,但在阶段结构模型中敏感性要低得多。最后,除非成体与幼体的体型比足够小,否则阶段结构模型无法令人满意地捕捉体型结构模型的动态。我们得出结论,尽管阶段结构种群模型可以将个体生活史和特定阶段差异一致地转化到种群水平,但在应用时必须谨慎。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验