Suppr超能文献

确定免疫检查点阻断与溶瘤病毒疗法的有效联合方案。

Defining Effective Combinations of Immune Checkpoint Blockade and Oncolytic Virotherapy.

作者信息

Rojas Juan J, Sampath Padma, Hou Weizhou, Thorne Steve H

机构信息

Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.

Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.

出版信息

Clin Cancer Res. 2015 Dec 15;21(24):5543-51. doi: 10.1158/1078-0432.CCR-14-2009. Epub 2015 Jul 17.

Abstract

PURPOSE

Recent data from randomized clinical trials with oncolytic viral therapies and with cancer immunotherapies have finally recapitulated the promise these platforms demonstrated in preclinical models. Perhaps the greatest advance with oncolytic virotherapy has been the appreciation of the importance of activation of the immune response in therapeutic activity. Meanwhile, the understanding that blockade of immune checkpoints (with antibodies that block the binding of PD1 to PDL1 or CTLA4 to B7-2) is critical for an effective antitumor immune response has revitalized the field of immunotherapy. The combination of immune activation using an oncolytic virus and blockade of immune checkpoints is therefore a logical next step.

EXPERIMENTAL DESIGN

Here, we explore such combinations and demonstrate their potential to produce enhanced responses in mouse tumor models. Different combinations and regimens were explored in immunocompetent mouse models of renal and colorectal cancer. Bioluminescence imaging and immune assays were used to determine the mechanisms mediating synergistic or antagonistic combinations.

RESULTS

Interaction between immune checkpoint inhibitors and oncolytic virotherapy was found to be complex, with correct selection of viral strain, antibody, and timing of the combination being critical for synergistic effects. Indeed, some combinations produced antagonistic effects and loss of therapeutic activity. A period of oncolytic viral replication and directed targeting of the immune response against the tumor were required for the most beneficial effects, with CD8(+) and NK, but not CD4(+) cells mediating the effects.

CONCLUSIONS

These considerations will be critical in the design of the inevitable clinical translation of these combination approaches. Clin Cancer Res; 21(24); 5543-51. ©2015 AACR.See related commentary by Slaney and Darcy, p. 5417.

摘要

目的

溶瘤病毒疗法和癌症免疫疗法的随机临床试验近期数据终于再次证实了这些平台在临床前模型中所展现的前景。溶瘤病毒疗法取得的最大进展或许在于认识到了免疫反应激活在治疗活性中的重要性。与此同时,对免疫检查点阻断(使用阻断PD1与PDL1结合或CTLA4与B7 - 2结合的抗体)对于有效的抗肿瘤免疫反应至关重要的理解,重振了免疫疗法领域。因此,使用溶瘤病毒激活免疫与阻断免疫检查点相结合是合乎逻辑的下一步。

实验设计

在此,我们探索此类联合疗法,并证明它们在小鼠肿瘤模型中产生增强反应的潜力。在具有免疫活性的肾癌和结直肠癌小鼠模型中探索了不同的联合方式和方案。采用生物发光成像和免疫分析来确定介导协同或拮抗联合作用的机制。

结果

发现免疫检查点抑制剂与溶瘤病毒疗法之间的相互作用很复杂,正确选择病毒株、抗体以及联合的时机对于协同效应至关重要。实际上,一些联合产生了拮抗作用并导致治疗活性丧失。最有益的效果需要一段溶瘤病毒复制期以及针对肿瘤的免疫反应定向靶向,由CD8(+)和NK细胞而非CD4(+)细胞介导这些效应。

结论

这些考虑因素对于这些联合方法不可避免的临床转化设计至关重要。《临床癌症研究》;21(24);5543 - 5551。©2015美国癌症研究协会。见Slaney和Darcy的相关评论,第5417页。

相似文献

1
Defining Effective Combinations of Immune Checkpoint Blockade and Oncolytic Virotherapy.
Clin Cancer Res. 2015 Dec 15;21(24):5543-51. doi: 10.1158/1078-0432.CCR-14-2009. Epub 2015 Jul 17.
3
Oncolytic VSV Primes Differential Responses to Immuno-oncology Therapy.
Mol Ther. 2017 Aug 2;25(8):1917-1932. doi: 10.1016/j.ymthe.2017.05.006. Epub 2017 Jun 2.
6
Tumor Microenvironment Remodeling by Intratumoral Oncolytic Vaccinia Virus Enhances the Efficacy of Immune-Checkpoint Blockade.
Clin Cancer Res. 2019 Mar 1;25(5):1612-1623. doi: 10.1158/1078-0432.CCR-18-1932. Epub 2018 Dec 11.
8
Oncolytic viruses as engineering platforms for combination immunotherapy.
Nat Rev Cancer. 2018 Jul;18(7):419-432. doi: 10.1038/s41568-018-0009-4.
9
Local Delivery of OncoVEX Generates Systemic Antitumor Immune Responses Enhanced by Cytotoxic T-Lymphocyte-Associated Protein Blockade.
Clin Cancer Res. 2017 Oct 15;23(20):6190-6202. doi: 10.1158/1078-0432.CCR-17-0681. Epub 2017 Jul 13.
10
Oncolytic Newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma.
EBioMedicine. 2019 Nov;49:96-105. doi: 10.1016/j.ebiom.2019.10.032. Epub 2019 Oct 29.

引用本文的文献

1
Oncolytic viruses in head and neck cancers: clinical applications and therapeutic potential.
Front Microbiol. 2025 Aug 13;16:1641267. doi: 10.3389/fmicb.2025.1641267. eCollection 2025.
3
Oncolytic immunovirotherapy: finding the tumor antigen needle in the antiviral haystack.
Immunotherapy. 2025 Jun;17(8):585-594. doi: 10.1080/1750743X.2025.2513853. Epub 2025 Jun 6.
6
A Multiple-Model-Informed Drug-Development Approach for Optimal Regimen Selection of an Oncolytic Virus in Combination With Pembrolizumab.
CPT Pharmacometrics Syst Pharmacol. 2025 Mar;14(3):572-582. doi: 10.1002/psp4.13297. Epub 2025 Jan 8.
8
Mediation of antitumor activity by AZD4820 oncolytic vaccinia virus encoding IL-12.
Mol Ther Oncol. 2024 Jan 10;32(1):200758. doi: 10.1016/j.omton.2023.200758. eCollection 2024 Mar 21.
9
The role of intestinal flora on tumor immunotherapy: recent progress and treatment implications.
Heliyon. 2023 Dec 20;10(1):e23919. doi: 10.1016/j.heliyon.2023.e23919. eCollection 2024 Jan 15.
10
Oncolytic adenovirus coding for shedding-resistant MICA enhances immune responses against tumors.
Cancer Immunol Immunother. 2024 Jan 5;73(1):5. doi: 10.1007/s00262-023-03611-3.

本文引用的文献

1
Armed therapeutic viruses - a disruptive therapy on the horizon of cancer immunotherapy.
Front Immunol. 2014 Feb 24;5:74. doi: 10.3389/fimmu.2014.00074. eCollection 2014.
2
Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy.
Sci Transl Med. 2014 Mar 5;6(226):226ra32. doi: 10.1126/scitranslmed.3008095.
3
Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer.
Nat Med. 2013 Mar;19(3):329-36. doi: 10.1038/nm.3089. Epub 2013 Feb 10.
4
Regulating cytokine function enhances safety and activity of genetic cancer therapies.
Mol Ther. 2013 Jan;21(1):167-74. doi: 10.1038/mt.2012.225. Epub 2012 Nov 13.
5
Crosstalk between immune cell and oncolytic vaccinia therapy enhances tumor trafficking and antitumor effects.
Mol Ther. 2013 Mar;21(3):620-8. doi: 10.1038/mt.2012.257. Epub 2012 Dec 11.
6
Immunology beats cancer: a blueprint for successful translation.
Nat Immunol. 2012 Dec;13(12):1129-32. doi: 10.1038/ni.2392.
7
Systemic combination virotherapy for melanoma with tumor antigen-expressing vesicular stomatitis virus and adoptive T-cell transfer.
Cancer Res. 2012 Sep 15;72(18):4753-64. doi: 10.1158/0008-5472.CAN-12-0600. Epub 2012 Jul 26.
8
Safety and activity of anti-PD-L1 antibody in patients with advanced cancer.
N Engl J Med. 2012 Jun 28;366(26):2455-65. doi: 10.1056/NEJMoa1200694. Epub 2012 Jun 2.
9
Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
N Engl J Med. 2012 Jun 28;366(26):2443-54. doi: 10.1056/NEJMoa1200690. Epub 2012 Jun 2.
10
The blockade of immune checkpoints in cancer immunotherapy.
Nat Rev Cancer. 2012 Mar 22;12(4):252-64. doi: 10.1038/nrc3239.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验