Suppr超能文献

巨噬细胞极化通过联合免疫病毒疗法和免疫检查点阻断促进胶质母细胞瘤的根除。

Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade.

作者信息

Saha Dipongkor, Martuza Robert L, Rabkin Samuel D

机构信息

Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.

Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.

出版信息

Cancer Cell. 2017 Aug 14;32(2):253-267.e5. doi: 10.1016/j.ccell.2017.07.006.

Abstract

Glioblastoma is an immunosuppressive, fatal brain cancer that contains glioblastoma stem-like cells (GSCs). Oncolytic herpes simplex virus (oHSV) selectively replicates in cancer cells while inducing anti-tumor immunity. oHSV G47Δ expressing murine IL-12 (G47Δ-mIL12), antibodies to immune checkpoints (CTLA-4, PD-1, PD-L1), or dual combinations modestly extended survival of a mouse glioma model. However, the triple combination of anti-CTLA-4, anti-PD-1, and G47Δ-mIL12 cured most mice in two glioma models. This treatment was associated with macrophage influx and M1-like polarization, along with increased T effector to T regulatory cell ratios. Immune cell depletion studies demonstrated that CD4 and CD8 T cells as well as macrophages are required for synergistic curative activity. This combination should be translatable to the clinic and other immunosuppressive cancers.

摘要

胶质母细胞瘤是一种具有免疫抑制性的致命性脑癌,其中含有胶质母细胞瘤干细胞样细胞(GSCs)。溶瘤单纯疱疹病毒(oHSV)在癌细胞中选择性复制,同时诱导抗肿瘤免疫。表达小鼠白细胞介素-12的oHSV G47Δ(G47Δ-mIL12)、免疫检查点抗体(CTLA-4、PD-1、PD-L1)或双重组合可适度延长小鼠胶质瘤模型的生存期。然而,抗CTLA-4、抗PD-1和G47Δ-mIL12的三联组合治愈了两个胶质瘤模型中的大多数小鼠。这种治疗与巨噬细胞流入和M1样极化有关,同时T效应细胞与T调节细胞的比例增加。免疫细胞耗竭研究表明,协同治愈活性需要CD4和CD8 T细胞以及巨噬细胞。这种联合治疗应该可以转化到临床以及其他免疫抑制性癌症的治疗中。

相似文献

4
Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models.
Clin Cancer Res. 2018 Jul 15;24(14):3409-3422. doi: 10.1158/1078-0432.CCR-17-1717. Epub 2018 Mar 29.
5
Defining Effective Combinations of Immune Checkpoint Blockade and Oncolytic Virotherapy.
Clin Cancer Res. 2015 Dec 15;21(24):5543-51. doi: 10.1158/1078-0432.CCR-14-2009. Epub 2015 Jul 17.
6
Oncolytic herpes simplex virus expressing IL-2 controls glioblastoma growth and improves survival.
J Immunother Cancer. 2024 Apr 9;12(4):e008880. doi: 10.1136/jitc-2024-008880.
8
Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma.
Clin Cancer Res. 2021 Feb 1;27(3):889-902. doi: 10.1158/1078-0432.CCR-20-2400. Epub 2020 Nov 30.
9
Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model.
Cancer Immunol Res. 2016 Feb;4(2):124-35. doi: 10.1158/2326-6066.CIR-15-0151. Epub 2015 Nov 6.
10
Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors.
Cancer Res. 2013 Jun 15;73(12):3591-603. doi: 10.1158/0008-5472.CAN-12-4100. Epub 2013 Apr 30.

引用本文的文献

1
Progenitor cells, microglia, and non-coding RNAs: Orchestrators of glioblastoma pathogenesis and therapeutic resistance.
Noncoding RNA Res. 2025 Aug 5;15:85-99. doi: 10.1016/j.ncrna.2025.07.007. eCollection 2025 Dec.
2
Oncolytic Herpes Simplex Virus Therapy: Latest Advances, Core Challenges, and Future Outlook.
Vaccines (Basel). 2025 Aug 20;13(8):880. doi: 10.3390/vaccines13080880.
3
Targeting Macrophages in Glioblastoma: Current Therapies and Future Directions.
Cancers (Basel). 2025 Aug 18;17(16):2687. doi: 10.3390/cancers17162687.
5
Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review).
Int J Mol Med. 2025 Nov;56(5). doi: 10.3892/ijmm.2025.5612. Epub 2025 Aug 24.
6
Antitumor power of oncolytic HSV engineered with IL-12 and IL-15.
Mol Ther Oncol. 2025 Jul 28;33(3):201025. doi: 10.1016/j.omton.2025.201025. eCollection 2025 Sep 18.
7
Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives.
Cancers (Basel). 2025 Aug 1;17(15):2550. doi: 10.3390/cancers17152550.
9
Polio virotherapy provokes MDA5 signaling and CD4 T cell help to mediate cancer vaccination.
Microbiol Mol Biol Rev. 2025 Jul 8:e0004024. doi: 10.1128/mmbr.00040-24.

本文引用的文献

2
Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma.
J Clin Oncol. 2016 Aug 1;34(22):2619-26. doi: 10.1200/JCO.2016.67.1529. Epub 2016 Jun 13.
4
Talimogene Laherparepvec for the Treatment of Advanced Melanoma.
Clin Cancer Res. 2016 Jul 1;22(13):3127-31. doi: 10.1158/1078-0432.CCR-15-2709. Epub 2016 May 4.
5
PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma.
N Engl J Med. 2016 Jun 30;374(26):2542-52. doi: 10.1056/NEJMoa1603702. Epub 2016 Apr 19.
6
Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy.
Nat Rev Cancer. 2016 May;16(5):275-87. doi: 10.1038/nrc.2016.36. Epub 2016 Apr 15.
8
Dual Faces of IFNγ in Cancer Progression: A Role of PD-L1 Induction in the Determination of Pro- and Antitumor Immunity.
Clin Cancer Res. 2016 May 15;22(10):2329-34. doi: 10.1158/1078-0432.CCR-16-0224. Epub 2016 Mar 25.
9
EXPLORING THE ANTITUMOR EFFECT OF VIRUS IN MALIGNANT GLIOMA.
Drugs Future. 2015;40(11):739-749. doi: 10.1358/dof.2015.040.11.2383070.
10
Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia.
Blood. 2016 Mar 17;127(11):1449-58. doi: 10.1182/blood-2015-06-652503. Epub 2015 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验