Suppr超能文献

利用IBH1诱导矮化表型可能会在植物工厂条件下提高植物源药物的产量。

Induction of a dwarf phenotype with IBH1 may enable increased production of plant-made pharmaceuticals in plant factory conditions.

作者信息

Nagatoshi Yukari, Ikeda Miho, Kishi Hiroyuki, Hiratsu Keiichiro, Muraguchi Atsushi, Ohme-Takagi Masaru

机构信息

Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.

Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan.

出版信息

Plant Biotechnol J. 2016 Mar;14(3):887-94. doi: 10.1111/pbi.12437. Epub 2015 Jul 20.

Abstract

Year-round production in a contained, environmentally controlled 'plant factory' may provide a cost-effective method to produce pharmaceuticals and other high-value products. However, cost-effective production may require substantial modification of the host plant phenotype; for example, using dwarf plants can enable the growth of more plants in a given volume by allowing more plants per shelf and enabling more shelves to be stacked vertically. We show here that the expression of the chimeric repressor for Arabidopsis AtIBH1 (P35S:AtIBH1SRDX) in transgenic tobacco plants (Nicotiana tabacum) induces a dwarf phenotype, with reduced cell size. We estimate that, in a given volume of cultivation space, we can grow five times more AtIBH1SRDX plants than wild-type plants. Although, the AtIBH1SRDX plants also showed reduced biomass compared with wild-type plants, they produced about four times more biomass per unit of cultivation volume. To test whether the dwarf phenotype affects the production of recombinant proteins, we expressed the genes for anti-hepatitis B virus antibodies (anti-HBs) in tobacco plants and found that the production of anti-HBs per unit fresh weight did not significantly differ between wild-type and AtIBH1SRDX plants. These data indicate that P35S:AtIBH1SRDX plants produced about fourfold more antibody per unit of cultivation volume, compared with wild type. Our results indicate that AtIBH1SRDX provides a useful tool for the modification of plant phenotype for cost-effective production of high-value products by stably transformed plants in plant factory conditions.

摘要

在一个封闭的、环境可控的“植物工厂”中进行全年生产,可能会提供一种具有成本效益的方法来生产药品和其他高价值产品。然而,具有成本效益的生产可能需要对宿主植物的表型进行大量改造;例如,使用矮化植物可以通过在每个架子上容纳更多植物并允许垂直堆叠更多架子,从而在给定体积内种植更多植物。我们在此表明,在转基因烟草植株(烟草)中表达拟南芥AtIBH1的嵌合阻遏物(P35S:AtIBH1SRDX)会诱导矮化表型,细胞大小减小。我们估计,在给定体积的栽培空间中,我们可以种植的AtIBH1SRDX植株数量是野生型植株的五倍。尽管AtIBH1SRDX植株与野生型植株相比生物量也有所减少,但它们每单位栽培体积产生的生物量约为野生型植株的四倍。为了测试矮化表型是否影响重组蛋白的生产,我们在烟草植株中表达了抗乙型肝炎病毒抗体(抗-HBs)的基因,发现野生型和AtIBH1SRDX植株每单位鲜重的抗-HBs产量没有显著差异。这些数据表明,与野生型相比,P35S:AtIBH1SRDX植株每单位栽培体积产生的抗体量大约多四倍。我们的结果表明,AtIBH1SRDX为在植物工厂条件下通过稳定转化的植株改造植物表型以实现高价值产品的经济高效生产提供了一个有用的工具。

相似文献

2
A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis.
Plant Cell. 2012 Nov;24(11):4483-97. doi: 10.1105/tpc.112.105023. Epub 2012 Nov 16.
3
Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation.
Mol Biol Rep. 2013 Dec;40(12):7093-102. doi: 10.1007/s11033-013-2832-8. Epub 2013 Nov 1.
4
Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana.
J Plant Physiol. 2010 May 1;167(7):571-7. doi: 10.1016/j.jplph.2009.11.004. Epub 2009 Dec 4.
5
Optimisation of contained Nicotiana tabacum cultivation for the production of recombinant protein pharmaceuticals.
Transgenic Res. 2010 Apr;19(2):241-56. doi: 10.1007/s11248-009-9303-y. Epub 2009 Jul 9.

引用本文的文献

1
Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in .
Front Plant Sci. 2017 Nov 22;8:1999. doi: 10.3389/fpls.2017.01999. eCollection 2017.
2
Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories.
Front Plant Sci. 2016 Apr 25;7:539. doi: 10.3389/fpls.2016.00539. eCollection 2016.

本文引用的文献

1
Fighting Ebola with ZMapp: spotlight on plant-made antibody.
Sci China Life Sci. 2014 Oct;57(10):987-8. doi: 10.1007/s11427-014-4746-7. Epub 2014 Sep 13.
2
Role of plant expression systems in antibody production for passive immunization.
Int J Dev Biol. 2013;57(6-8):587-93. doi: 10.1387/ijdb.130266ad.
3
Hybrid viral vectors for vaccine and antibody production in plants.
Curr Pharm Des. 2013;19(31):5574-86. doi: 10.2174/13816128113199990335.
4
Green factories for biopharmaceuticals.
Curr Med Chem. 2013;20(8):1038-46.
5
A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis.
Plant Cell. 2012 Nov;24(11):4483-97. doi: 10.1105/tpc.112.105023. Epub 2012 Nov 16.
6
Evolution of plant-made pharmaceuticals.
Int J Mol Sci. 2011;12(5):3220-36. doi: 10.3390/ijms12053220. Epub 2011 May 17.
8
Molecular breeding of tomato lines for mass production of miraculin in a plant factory.
J Agric Food Chem. 2010 Sep 8;58(17):9505-10. doi: 10.1021/jf101874b.
9
Production of recombinant miraculin using transgenic tomatoes in a closed cultivation system.
J Agric Food Chem. 2010 May 26;58(10):6096-101. doi: 10.1021/jf100414v.
10
Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë.
Plant Biotechnol J. 2010 Feb;8(2):211-22. doi: 10.1111/j.1467-7652.2009.00478.x. Epub 2009 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验