Díez-Aguilar María, Morosini María Isabel, Tedim Ana P, Rodríguez Irene, Aktaş Zerrin, Cantón Rafael
Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.
Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
Antimicrob Agents Chemother. 2015 Oct;59(10):6039-45. doi: 10.1128/AAC.00822-15. Epub 2015 Jul 20.
The antibacterial activity of fosfomycin-tobramycin combination was studied by time-kill assay in eight Pseudomonas aeruginosa clinical isolates belonging to the fosfomycin wild-type population (MIC = 64 μg/ml) but with different tobramycin susceptibilities (MIC range, 1 to 64 μg/ml). The mutant prevention concentration (MPC) and mutant selection window (MSW) were determined in five of these strains (tobramycin MIC range, 1 to 64 μg/ml) in aerobic and anaerobic conditions simulating environments that are present in biofilm-mediated infections. Fosfomycin-tobramycin was synergistic and bactericidal for the isolates with mutations in the mexZ repressor gene, with a tobramycin MIC of 4 μg/ml. This effect was not observed in strains displaying tobramycin MICs of 1 to 2 μg/ml due to the strong bactericidal effect of tobramycin alone. Fosfomycin presented higher MPC values (range, 2,048 to >2,048 μg/ml) in aerobic and anaerobic conditions than did tobramycin (range, 16 to 256 μg/ml). Interestingly, the association rendered narrow or even null MSWs in the two conditions. However, for isolates with high-level tobramycin resistance that harbored aminoglycoside nucleotidyltransferases, time-kill assays showed no synergy, with wide MSWs in the two environments. glpT gene mutations responsible for fosfomycin resistance in P. aeruginosa were determined in fosfomycin-susceptible wild-type strains and mutant derivatives recovered from MPC studies. All mutant derivatives had changes in the GlpT amino acid sequence, which resulted in a truncated permease responsible for fosfomycin resistance. These results suggest that fosfomycin-tobramycin can be an alternative for infections due to P. aeruginosa since it has demonstrated synergistic and bactericidal activity in susceptible isolates and those with low-level tobramycin resistance. It also prevents the emergence of resistant mutants in either aerobic or anaerobic environments.
通过时间杀菌试验研究了磷霉素-妥布霉素联合用药对8株铜绿假单胞菌临床分离株的抗菌活性,这些分离株属于磷霉素野生型群体(MIC = 64μg/ml),但对妥布霉素的敏感性不同(MIC范围为1至64μg/ml)。在其中5株菌株(妥布霉素MIC范围为1至64μg/ml)中,在模拟生物膜介导感染中存在的需氧和厌氧条件下,测定了突变预防浓度(MPC)和突变选择窗(MSW)。磷霉素-妥布霉素对mexZ阻遏基因突变的分离株具有协同杀菌作用,妥布霉素MIC为4μg/ml。由于妥布霉素单独具有很强的杀菌作用,在妥布霉素MIC为1至2μg/ml的菌株中未观察到这种效果。在需氧和厌氧条件下,磷霉素的MPC值(范围为2048至>2048μg/ml)高于妥布霉素(范围为16至256μg/ml)。有趣的是,在这两种条件下,联合用药使MSW变窄甚至消失。然而,对于携带氨基糖苷核苷酸转移酶的高水平妥布霉素耐药分离株,时间杀菌试验显示无协同作用,在两种环境中MSW都很宽。在磷霉素敏感的野生型菌株和从MPC研究中获得的突变衍生物中,测定了铜绿假单胞菌中负责磷霉素耐药性的glpT基因突变。所有突变衍生物的GlpT氨基酸序列都发生了变化,导致一种负责磷霉素耐药性的截短通透酶。这些结果表明,磷霉素-妥布霉素可作为治疗铜绿假单胞菌感染的一种替代药物,因为它在敏感分离株和低水平妥布霉素耐药株中已显示出协同杀菌活性。它还能防止在需氧或厌氧环境中耐药突变体的出现。