Jack Carmen V, Cruz Cristina, Hull Ryan M, Keller Markus A, Ralser Markus, Houseley Jonathan
Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;
Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9674-9. doi: 10.1073/pnas.1505015112. Epub 2015 Jul 20.
Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.
重复序列在真核生物基因组中广泛存在,核糖体DNA等关键功能元件往往由串联排列的高拷贝重复序列构成。一般来说,高拷贝重复序列非常稳定,但许多生物体在特定时间或特定条件下会出现核糖体DNA的快速扩增。在此,我们证明雷帕霉素靶蛋白(TOR)信号通路可刺激芽殖酵母中的核糖体DNA扩增,将外部营养物质的可利用性与核糖体DNA拷贝数联系起来。我们发现核糖体DNA扩增受三种组蛋白脱乙酰酶调控:Sir2、Hst3和Hst4。这些酶控制着同源重组依赖性和非同源重组依赖性扩增途径,它们协同作用以介导核糖体DNA拷贝数的快速、定向变化。雷帕霉素是营养响应性TOR通路的抑制剂,它可完全抑制扩增;这种效应与生长速率无关,且直接通过Sir2、Hst3和Hst4介导。已知热量限制会上调烟酰胺酶Pnc1的表达,该酶可增强Sir2、Hst3和Hst4的活性。相反,正常葡萄糖浓度会拉伸核糖体DNA拷贝数低的细胞的核糖体合成能力,我们发现这些细胞通过降低PNC1表达对热量过剩表现出一种此前未被认识到的转录反应。PNC1下调是核糖体DNA扩增控制中的一个关键因素,因为PNC1的过表达会大幅降低核糖体DNA扩增速率。我们的结果揭示了一条信号通路如何协调特定的基因组变化,并证明重复DNA的拷贝数可被改变以适应环境条件。