Suppr超能文献

通过TOR途径对核糖体DNA扩增的调控。

Regulation of ribosomal DNA amplification by the TOR pathway.

作者信息

Jack Carmen V, Cruz Cristina, Hull Ryan M, Keller Markus A, Ralser Markus, Houseley Jonathan

机构信息

Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;

Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;

出版信息

Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9674-9. doi: 10.1073/pnas.1505015112. Epub 2015 Jul 20.

Abstract

Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.

摘要

重复序列在真核生物基因组中广泛存在,核糖体DNA等关键功能元件往往由串联排列的高拷贝重复序列构成。一般来说,高拷贝重复序列非常稳定,但许多生物体在特定时间或特定条件下会出现核糖体DNA的快速扩增。在此,我们证明雷帕霉素靶蛋白(TOR)信号通路可刺激芽殖酵母中的核糖体DNA扩增,将外部营养物质的可利用性与核糖体DNA拷贝数联系起来。我们发现核糖体DNA扩增受三种组蛋白脱乙酰酶调控:Sir2、Hst3和Hst4。这些酶控制着同源重组依赖性和非同源重组依赖性扩增途径,它们协同作用以介导核糖体DNA拷贝数的快速、定向变化。雷帕霉素是营养响应性TOR通路的抑制剂,它可完全抑制扩增;这种效应与生长速率无关,且直接通过Sir2、Hst3和Hst4介导。已知热量限制会上调烟酰胺酶Pnc1的表达,该酶可增强Sir2、Hst3和Hst4的活性。相反,正常葡萄糖浓度会拉伸核糖体DNA拷贝数低的细胞的核糖体合成能力,我们发现这些细胞通过降低PNC1表达对热量过剩表现出一种此前未被认识到的转录反应。PNC1下调是核糖体DNA扩增控制中的一个关键因素,因为PNC1的过表达会大幅降低核糖体DNA扩增速率。我们的结果揭示了一条信号通路如何协调特定的基因组变化,并证明重复DNA的拷贝数可被改变以适应环境条件。

相似文献

1
Regulation of ribosomal DNA amplification by the TOR pathway.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9674-9. doi: 10.1073/pnas.1505015112. Epub 2015 Jul 20.
2
Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae.
Nucleic Acids Res. 2011 Mar;39(4):1336-50. doi: 10.1093/nar/gkq895. Epub 2010 Oct 14.
3
Interplay between histone H3 lysine 56 deacetylation and chromatin modifiers in response to DNA damage.
Genetics. 2015 May;200(1):185-205. doi: 10.1534/genetics.115.175919. Epub 2015 Mar 18.
4
Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4.
Mol Cell. 2006 Jul 7;23(1):109-19. doi: 10.1016/j.molcel.2006.06.006.
5
Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity.
Mol Cell Biol. 2004 Feb;24(3):1301-12. doi: 10.1128/MCB.24.3.1301-1312.2004.
8
Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.
J Biol Chem. 2012 Jun 15;287(25):20957-66. doi: 10.1074/jbc.M112.367524. Epub 2012 Apr 26.

引用本文的文献

1
Assessing Human Ribosomal DNA Variation and Its Association With Phenotypic Outcomes.
Bioessays. 2025 Apr;47(4):e202400232. doi: 10.1002/bies.202400232. Epub 2025 Jan 20.
3
Non-canonical chromatin-based functions for the threonine metabolic pathway.
Sci Rep. 2024 Sep 30;14(1):22629. doi: 10.1038/s41598-024-72394-z.
5
Transcription as source of genetic heterogeneity in budding yeast.
Yeast. 2024 Apr;41(4):171-185. doi: 10.1002/yea.3926. Epub 2024 Jan 9.
6
Chromosomal dynamics in : comparative PLOP-FISH analysis of tandem repeats and flow cytometric nuclear genome size estimations.
Front Plant Sci. 2023 Dec 14;14:1288220. doi: 10.3389/fpls.2023.1288220. eCollection 2023.
7
Genome instability footprint under rapamycin and hydroxyurea treatments.
PLoS Genet. 2023 Nov 6;19(11):e1011012. doi: 10.1371/journal.pgen.1011012. eCollection 2023 Nov.
9
Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation.
PLoS Biol. 2023 Aug 29;21(8):e3002250. doi: 10.1371/journal.pbio.3002250. eCollection 2023 Aug.
10
Dietary change without caloric restriction maintains a youthful profile in ageing yeast.
PLoS Biol. 2023 Aug 29;21(8):e3002245. doi: 10.1371/journal.pbio.3002245. eCollection 2023 Aug.

本文引用的文献

1
A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability.
PLoS Genet. 2013 Oct;9(10):e1003899. doi: 10.1371/journal.pgen.1003899. Epub 2013 Oct 24.
2
Rtt109 prevents hyper-amplification of ribosomal RNA genes through histone modification in budding yeast.
PLoS Genet. 2013 Apr;9(4):e1003410. doi: 10.1371/journal.pgen.1003410. Epub 2013 Apr 4.
4
Yeast as a model to understand the interaction between genotype and the response to calorie restriction.
FEBS Lett. 2012 Aug 31;586(18):2868-73. doi: 10.1016/j.febslet.2012.07.038. Epub 2012 Jul 22.
6
Rapid analysis of Saccharomyces cerevisiae genome rearrangements by multiplex ligation-dependent probe amplification.
PLoS Genet. 2012;8(3):e1002539. doi: 10.1371/journal.pgen.1002539. Epub 2012 Mar 1.
7
Target of rapamycin (TOR) in nutrient signaling and growth control.
Genetics. 2011 Dec;189(4):1177-201. doi: 10.1534/genetics.111.133363.
8
Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery.
Nucleic Acids Res. 2011 Nov 1;39(20):8778-91. doi: 10.1093/nar/gkr589. Epub 2011 Jul 17.
10
Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae.
Nucleic Acids Res. 2011 Mar;39(4):1336-50. doi: 10.1093/nar/gkq895. Epub 2010 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验