Nier Vincent, Deforet Maxime, Duclos Guillaume, Yevick Hannah G, Cochet-Escartin Olivier, Marcq Philippe, Silberzan Pascal
Laboratoire Physico-Chimie Curie, Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Sorbonne Universités, 75248 Paris, France.
Laboratoire Physico-Chimie Curie, Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Sorbonne Universités, 75248 Paris, France Laboratoire PhysicoChimie Curie, Institut Curie, Equipe labellisée Ligue Contre le Cancer, 75248 Paris, France.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9546-51. doi: 10.1073/pnas.1501278112. Epub 2015 Jul 21.
Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions.
组织融合消除了组织中的物理空隙,形成连续结构,是发育和修复中许多过程的核心。体内的融合事件,尤其是在胚胎发育过程中,通常涉及多细胞肌动球蛋白索在自由边缘的收缩。然而,在体外,细胞与底物的粘附有利于由片状伪足突起介导的闭合机制,这阻碍了对收缩环机制的系统研究。在这里,我们表明单层细胞可以通过收缩环闭合覆盖比细胞尺寸大得多的可控介观非粘附区域,并且这个过程需要活跃的上皮波动。我们构建了一个简单的随机模型,该模型包括收缩环收缩性、组织波动和有效摩擦,以定性和定量地解释闭合动力学。我们的数据表明,在体内,组织融合通过协调片状伪足突起和收缩环收缩来适应局部环境。