Suppr超能文献

肌动蛋白环段切换驱动非黏附性间隙闭合。

Actin-ring segment switching drives nonadhesive gap closure.

机构信息

Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802.

Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802.

出版信息

Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33263-33271. doi: 10.1073/pnas.2010960117. Epub 2020 Dec 14.

Abstract

Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.

摘要

间隙闭合是一种基本过程,它可以消除物理不连续性,恢复组织完整性,这在正常发育和受损组织与器官修复中都发挥着重要作用。在这里,我们展示了一种无黏附性的间隙闭合模型,其中细胞的集体迁移、大规模肌动蛋白网络融合和束带收缩共同作用以恢复间隙。增殖压力驱使迁移细胞附着在间隙前缘,此时已经组装了一个多细胞肌动蛋白环。然后,通过将新附着细胞中的肌动蛋白纤维融合到肌动蛋白电缆中,并从先前排列的细胞中解聚,发生肌动蛋白电缆段切换过程,从而缩小间隙。这种肌动蛋白电缆段切换有利于间隙的高曲率边缘,从而产生与尺寸相关的间隙闭合。细胞力显微镜证据表明,向内牵引力的径向分量持续上升表明肌动蛋白电缆段切换成功。我们提出了一个整合细胞增殖、肌动蛋白纤维融合和束带收缩的动力学模型,以定量解释间隙闭合动力学。我们的数据揭示了一种以前未被探索的机制,其中细胞以高度协作的方式利用多方面的策略来闭合无黏附性间隙。

相似文献

1
Actin-ring segment switching drives nonadhesive gap closure.肌动蛋白环段切换驱动非黏附性间隙闭合。
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33263-33271. doi: 10.1073/pnas.2010960117. Epub 2020 Dec 14.
2
Geometry-mediated bridging drives nonadhesive stripe wound healing.几何结构介导的桥连驱动非粘连条纹状伤口愈合。
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2221040120. doi: 10.1073/pnas.2221040120. Epub 2023 Apr 25.
5
Tissue fusion over nonadhering surfaces.非粘连表面的组织融合。
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9546-51. doi: 10.1073/pnas.1501278112. Epub 2015 Jul 21.
10
Fibroblasts Close a Void in Free Space by a Purse-String Mechanism.成纤维细胞通过束带机制在自由空间中闭合空隙。
ACS Appl Mater Interfaces. 2022 Sep 14;14(36):40522-40534. doi: 10.1021/acsami.2c07952. Epub 2022 Aug 29.

引用本文的文献

3
Geometry-mediated bridging drives nonadhesive stripe wound healing.几何结构介导的桥连驱动非粘连条纹状伤口愈合。
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2221040120. doi: 10.1073/pnas.2221040120. Epub 2023 Apr 25.
4
Morphological transformations of vesicles with confined flexible filaments.囊泡与受限柔性纤维的形态转变。
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2300380120. doi: 10.1073/pnas.2300380120. Epub 2023 Apr 25.
6
Leading-edge elongation by follower cell interruption in advancing epithelial cell sheets.前导延伸通过推进上皮细胞片的跟随细胞中断。
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2119903119. doi: 10.1073/pnas.2119903119. Epub 2022 Apr 27.

本文引用的文献

2
Forces driving epithelial wound healing.驱动上皮伤口愈合的力量。
Nat Phys. 2014 Sep;10(9):683-690. doi: 10.1038/nphys3040.
4
Tissue fusion over nonadhering surfaces.非粘连表面的组织融合。
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9546-51. doi: 10.1073/pnas.1501278112. Epub 2015 Jul 21.
5
Laminins: Roles and Utility in Wound Repair.层粘连蛋白:在伤口修复中的作用及应用
Adv Wound Care (New Rochelle). 2015 Apr 1;4(4):250-263. doi: 10.1089/wound.2014.0533.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验