Cartailler Jérôme, Reingruber Jürgen
École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
Phys Biol. 2015 Jul 22;12(4):046012. doi: 10.1088/1478-3975/12/4/046012.
Cellular responses often require the fast activation or repression of specific genes, which depends on transcription factors (TFs) that have to quickly find the promoters of these genes within a large genome. TFs search for their DNA promoter target by alternating between bulk diffusion and sliding along the DNA, a mechanism known as facilitated diffusion. We study a facilitated diffusion framework with switching between three search modes: a bulk mode and two sliding modes triggered by conformational changes between two protein conformations. In one conformation (search mode) the TF interacts unspecifically with the DNA backbone resulting in fast sliding. In the other conformation (recognition mode) it interacts specifically and strongly with DNA base pairs leading to slow displacement. From the bulk, a TF associates with the DNA at a random position that is correlated with the previous dissociation point, which implicitly is a function of the DNA structure. The target affinity depends on the conformation. We derive exact expressions for the mean first passage time (MFPT) to bind to the promoter and the conditional probability to bind before detaching when arriving at the promoter site. We systematically explore the parameter space and compare various search scenarios. We compare our results with experimental data for the dimeric Lac repressor search in E. coli bacteria. We find that a coiled DNA conformation is absolutely necessary for a fast MFPT. With frequent spontaneous conformational changes, a fast search time is achieved even when a TF becomes immobilized in the recognition state due to the specific bindings. We find a MFPT compatible with experimental data in presence of a specific TF-DNA interaction energy that has a Gaussian distribution with a large variance.
细胞反应通常需要快速激活或抑制特定基因,这取决于转录因子(TFs),它们必须在庞大的基因组中迅速找到这些基因的启动子。TFs通过在大量扩散和沿DNA滑动之间交替来搜索其DNA启动子靶点,这种机制被称为易化扩散。我们研究了一种易化扩散框架,其中存在三种搜索模式之间的切换:一种大量模式和由两种蛋白质构象之间的构象变化触发的两种滑动模式。在一种构象(搜索模式)下,TF与DNA主链非特异性相互作用,导致快速滑动。在另一种构象(识别模式)下,它与DNA碱基对特异性且强烈地相互作用,导致位移缓慢。从大量状态开始,TF在与先前解离点相关的随机位置与DNA结合,这隐含地是DNA结构的函数。目标亲和力取决于构象。我们推导出了与启动子结合的平均首次通过时间(MFPT)以及到达启动子位点时在解离前结合的条件概率的精确表达式。我们系统地探索参数空间并比较各种搜索场景。我们将我们的结果与大肠杆菌中二聚体Lac阻遏物搜索的实验数据进行比较。我们发现,卷曲的DNA构象对于快速的MFPT绝对必要。由于频繁的自发构象变化,即使TF由于特异性结合而固定在识别状态,也能实现快速搜索时间。我们发现在存在具有高斯分布且方差较大的特定TF-DNA相互作用能量的情况下,MFPT与实验数据兼容。