Perera Nirma D, Turner Bradley J
The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
Neurochem Res. 2016 Mar;41(3):544-53. doi: 10.1007/s11064-015-1665-3. Epub 2015 Jul 23.
Amyotrophic lateral sclerosis (ALS) is caused by selective loss of upper and lower motor neurons by complex mechanisms that are incompletely understood. Motor neurons are large, highly polarised and excitable cells with unusually high energetic demands to maintain resting membrane potential and propagate action potentials. This leads to higher ATP consumption and mitochondrial metabolism in motor neurons relative to other cells. Here, we review increasing evidence that defective energy metabolism and homeostasis contributes to selective vulnerability and degeneration of motor neurons in ALS. Firstly, we provide a brief overview of major energetic pathways in the CNS, including glycolysis, oxidative phosphorylation and the AMP-activated protein kinase (AMPK) signalling pathway, while highlighting critical metabolic interactions between neurons and astrocytes. Next, we review evidence from ALS patients and transgenic mutant SOD1 mice for weight loss, hypermetabolism, hyperlipidemia and mitochondrial dysfunction in disease onset and progression. Genetic and therapeutic modifiers of energy metabolism in mutant SOD1 mice will also be summarised. We also present evidence that additional ALS-linked proteins, TDP-43 and FUS, lead to energy disruption and mitochondrial defects in motor neurons. Lastly, we review emerging evidence including our own that dysregulation of the AMPK signalling cascade in motor neurons is an early and common event in ALS pathogenesis. We suggest that an imbalance in energy metabolism should be considered an important factor in both progression and potential treatment of ALS.
肌萎缩侧索硬化症(ALS)是由上、下运动神经元的选择性丧失所引起,其复杂机制尚未完全明确。运动神经元是大型、高度极化且可兴奋的细胞,维持静息膜电位和传播动作电位需要异常高的能量需求。这导致运动神经元相对于其他细胞具有更高的ATP消耗和线粒体代谢。在此,我们综述了越来越多的证据,表明能量代谢和稳态缺陷导致了ALS中运动神经元的选择性易损性和变性。首先,我们简要概述中枢神经系统中的主要能量途径,包括糖酵解、氧化磷酸化和AMP激活的蛋白激酶(AMPK)信号通路,同时强调神经元与星形胶质细胞之间的关键代谢相互作用。接下来,我们综述来自ALS患者和转基因突变SOD1小鼠的证据,这些证据表明在疾病发作和进展过程中存在体重减轻、代谢亢进、高脂血症和线粒体功能障碍。我们还将总结突变SOD1小鼠能量代谢的遗传和治疗修饰因子。我们还提供证据表明,其他与ALS相关的蛋白质,如TDP - 43和FUS,会导致运动神经元中的能量紊乱和线粒体缺陷。最后,我们综述了包括我们自己的研究在内的新证据,即运动神经元中AMPK信号级联的失调是ALS发病机制中的早期常见事件。我们认为能量代谢失衡应被视为ALS进展和潜在治疗中的一个重要因素。
Neurochem Res. 2016-3
PLoS One. 2014-3-4
Mediators Inflamm. 2017-9-7
Front Aging Neurosci. 2025-6-13
Cell Death Dis. 2025-2-19
Int J Mol Sci. 2024-10-30
Int J Mol Sci. 2023-3-7