肌萎缩侧索硬化症细胞模型中的超氧化物歧化酶1突变将能量产生从氧化磷酸化转变为糖酵解。

Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis.

作者信息

Allen Scott P, Rajan Sandeep, Duffy Lynn, Mortiboys Heather, Higginbottom Adrian, Grierson Andrew J, Shaw Pamela J

机构信息

Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.

Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.

出版信息

Neurobiol Aging. 2014 Jun;35(6):1499-509. doi: 10.1016/j.neurobiolaging.2013.11.025. Epub 2013 Dec 3.

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder involving the progressive degeneration of motor neurons in the brain and spinal cord. Mitochondrial dysfunction plays a key role in ALS disease progression and has been observed in several ALS cellular and animal models. Here, we show that fibroblasts isolated from ALS cases with a Cu/Zn superoxide dismutase (SOD1) I113T mutation recapitulate these mitochondrial defects. Using a novel technique, which measures mitochondrial respiration and glycolytic flux simultaneously in living cells, we have shown that SOD1 mutation causes a reduction in mitochondrial respiration and an increase in glycolytic flux. This causes a reduction in adenosine triphosphate produced by oxidative phosphorylation and an increase in adenosine triphosphate produced by glycolysis. Switching the energy source from glucose to galactose caused uncoupling of mitochondria with increased proton leak in SOD1(I113T) fibroblasts. Assessment of the contribution of fatty acid oxidation to total respiration, suggested that fatty acid oxidation is reduced in SOD1 ALS fibroblasts, an effect which can be mimicked by starving the control cells of glucose. These results highlight the importance of understanding the interplay between the major metabolic pathways, which has the potential to lead to strategies to correct the metabolic dysregulation observed in ALS cases.

摘要

肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,涉及大脑和脊髓中运动神经元的进行性退化。线粒体功能障碍在ALS疾病进展中起关键作用,并且在几种ALS细胞和动物模型中都有观察到。在这里,我们表明,从患有铜/锌超氧化物歧化酶(SOD1)I113T突变的ALS病例中分离出的成纤维细胞重现了这些线粒体缺陷。使用一种新技术,该技术可同时测量活细胞中的线粒体呼吸和糖酵解通量,我们已经表明SOD1突变导致线粒体呼吸减少和糖酵解通量增加。这导致氧化磷酸化产生的三磷酸腺苷减少,糖酵解产生的三磷酸腺苷增加。将能量来源从葡萄糖切换到半乳糖会导致SOD1(I113T)成纤维细胞中线粒体解偶联,质子泄漏增加。评估脂肪酸氧化对总呼吸的贡献表明,SOD1 ALS成纤维细胞中脂肪酸氧化减少,这种效应可以通过使对照细胞缺乏葡萄糖来模拟。这些结果突出了理解主要代谢途径之间相互作用的重要性,这有可能导致制定策略来纠正ALS病例中观察到的代谢失调。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索