Suppr超能文献

通过 MgF2 纳米涂层提高尖晶石 LiMn(1.5)Ni(0.5)O4 的电化学性能。

Improved electrochemical performance of spinel LiMn(1.5)Ni(0.5)O4 through MgF2 nano-coating.

机构信息

Key Laboratory of Photovoltaic Materials of Henan Province and School of Physics & Electronics, Henan University, Kaifeng 475004, PR China.

出版信息

Nanoscale. 2015 Oct 14;7(38):15609-17. doi: 10.1039/c5nr03564c. Epub 2015 Jul 23.

Abstract

A spinel LiMn1.5Ni0.5O4 (LMNO) cathode material synthesized by a sol-gel method is modified by MgF2 nano-coating via a wet coating strategy. The results of X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) showed that the MgF2 nano-coating layers do not physically change the bulk structure of the pristine material. Compared with the pristine compound, the MgF2-coated LMNO electrodes display enhanced cycling stabilities. Particularly, the 5 wt% MgF2-coated LMNO demonstrates the best reversibility, with a capacity retention of 89.9% after 100 cycles, much higher than that of the pristine material, 69.3%. The dQ/dV analysis and apparent Li(+) diffusion coefficient calculation prove that the kinetic properties are enhanced after MgF2 surface modification, which partly explains the improved electrochemical performances. Electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) data confirm that the MgF2 coating layer helps in suppressing the fast growth of the solid electrolyte interface (SEI) film in repeated cycling, which effectively stabilizes the spinel structure. Additionally, differential scanning calorimetry (DSC) tests show that the MgF2 nano-coating layer also helps in enhancing the thermal stability of the LMNO cathode.

摘要

采用溶胶-凝胶法合成的尖晶石 LiMn1.5Ni0.5O4(LMNO)正极材料通过湿涂法用 MgF2 纳米涂层进行改性。X 射线衍射(XRD)、拉曼光谱、场发射扫描电子显微镜(FESEM)和高分辨率透射电子显微镜(HRTEM)的结果表明,MgF2 纳米涂层层不会物理改变原始材料的体相结构。与原始化合物相比,MgF2 涂层的 LMNO 电极显示出增强的循环稳定性。特别是,5wt%MgF2 涂层的 LMNO 表现出最佳的可逆性,在 100 次循环后具有 89.9%的容量保持率,远高于原始材料的 69.3%。dQ/dV 分析和明显的 Li(+)扩散系数计算证明了动力学性能在 MgF2 表面改性后得到了增强,这部分解释了电化学性能的提高。电化学阻抗谱(EIS)和傅里叶变换红外光谱(FTIR)数据证实,MgF2 涂层有助于抑制在反复循环中固体电解质界面(SEI)膜的快速生长,从而有效地稳定尖晶石结构。此外,差示扫描量热法(DSC)测试表明,MgF2 纳米涂层层还有助于提高 LMNO 正极的热稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验