Suppr超能文献

缺陷工程化的β-MnO前驱体控制高压尖晶石LiMnNiO中的结构-性能关系

Defect-Engineered β-MnO Precursors Control the Structure-Property Relationships in High-Voltage Spinel LiMnNiO.

作者信息

Haruna Aderemi B, Mwonga Patrick, Barrett Dean, Rodella Cristiane B, Forbes Roy P, Venter Andrew, Sentsho Zeldah, Fletcher Philip J, Marken Frank, Ozoemena Kenneth I

机构信息

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.

Brazilian Synchrotron Light Laboratory (LNLS/Brazilian Center of Energy and Materials) (CNPEM), Campinas 13083-970, São Paulo, Brazil.

出版信息

ACS Omega. 2021 Sep 22;6(39):25562-25573. doi: 10.1021/acsomega.1c03656. eCollection 2021 Oct 5.

Abstract

This study examines the role of defects in structure-property relationships in spinel LiMnNiO (LMNO) cathode materials, especially in terms of Mn content, degree of disorder, and impurity phase, without the use of the traditional high-temperature annealing (≥700 °C used for making disordered LMNO). Two different phases of LMNO (i.e., highly 432-ordered and highly 3̅-disordered) have been prepared from two different β-MnO precursors obtained from an argon-rich atmosphere (β-MnO (Ar)) and a hydrogen-rich atmosphere [β-MnO (H)]. The LMNO samples and their corresponding β-MnO precursors are thoroughly characterized using different techniques including high-resolution transmission electron microscopy, field-emission scanning electron microscopy, Raman spectroscopy, powder neutron diffraction, X-ray photoelectron spectroscopy, synchrotron X-ray diffraction, X-ray absorption near-edge spectroscopy, and electrochemistry. LMNO from β-MnO (H) exhibits higher defects (oxygen vacancy content) than the one from the β-MnO (Ar). For the first time, defective β-MnO has been adopted as precursors for LMNO cathode materials with controlled oxygen vacancy, disordered phase, Mn content, and impurity contents without the need for conventional methods of doping with metal ions, high synthetic temperature, use of organic compounds, postannealing, microwave, or modification of the temperature-cooling profiles. The results show that the oxygen vacancy changes concurrently with the degree of disorder and Mn content, and the best electrochemical performance is only obtained at 850 °C for LMNO-(Ar). The findings in this work present unique opportunities that allow the use of β-MnO as viable precursors for manipulating the structure-property relationships in LMNO spinel materials for potential development of high-performance high-voltage lithium-ion batteries.

摘要

本研究考察了尖晶石型LiMnNiO(LMNO)阴极材料中结构-性能关系缺陷的作用,特别是在锰含量、无序度和杂质相方面,且不使用传统的高温退火(制备无序LMNO时使用≥700°C)。已从富含氩气的气氛(β-MnO(Ar))和富含氢气的气氛[β-MnO(H)]中获得的两种不同的β-MnO前驱体制备出了两种不同相的LMNO(即高度432有序和高度3̅无序)。使用包括高分辨率透射电子显微镜、场发射扫描电子显微镜、拉曼光谱、粉末中子衍射、X射线光电子能谱、同步辐射X射线衍射、X射线吸收近边光谱和电化学在内的不同技术对LMNO样品及其相应的β-MnO前驱体进行了全面表征。来自β-MnO(H)的LMNO比来自β-MnO(Ar)的LMNO表现出更高的缺陷(氧空位含量)。首次采用有缺陷的β-MnO作为LMNO阴极材料的前驱体,可控制氧空位、无序相、锰含量和杂质含量,而无需传统的金属离子掺杂、高合成温度、有机化合物的使用、后退火、微波或温度-冷却曲线的改变等方法。结果表明,氧空位与无序度和锰含量同时变化,且仅在850°C下制备的LMNO-(Ar)具有最佳的电化学性能。这项工作中的发现提供了独特的机会,使得可以将β-MnO用作可行的前驱体来调控LMNO尖晶石材料中的结构-性能关系,以推动高性能高压锂离子电池的潜在发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f96/8495857/c207fc90e389/ao1c03656_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验