Suppr超能文献

使用多模态传感器的非侵入式测量来评估恐惧。

Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors.

作者信息

Choi Jong-Suk, Bang Jae Won, Heo Hwan, Park Kang Ryoung

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea.

出版信息

Sensors (Basel). 2015 Jul 20;15(7):17507-33. doi: 10.3390/s150717507.

Abstract

Most previous research into emotion recognition used either a single modality or multiple modalities of physiological signal. However, the former method allows for limited enhancement of accuracy, and the latter has the disadvantages that its performance can be affected by head or body movements. Further, the latter causes inconvenience to the user due to the sensors attached to the body. Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies. Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors. Experimental results based on the t-test, the effect size and the sum of all of the correlation values with other modalities showed that facial temperature and subjective evaluation are more reliable than electroencephalogram (EEG) and eye blinking rate for the evaluation of fear.

摘要

先前大多数关于情绪识别的研究要么使用单一模态的生理信号,要么使用多模态的生理信号。然而,前一种方法在提高准确率方面效果有限,而后一种方法存在其性能会受到头部或身体运动影响的缺点。此外,后一种方法由于在身体上附着传感器,会给用户带来不便。在各种情绪中,恐惧的准确评估在许多应用中至关重要,如犯罪心理学、智能监控系统以及恐怖电影的客观评价。因此,我们提出了一种基于使用多个传感器进行非侵入式测量来评估恐惧的新方法。基于t检验、效应量以及与其他模态的所有相关值之和的实验结果表明,对于恐惧评估而言,面部温度和主观评价比脑电图(EEG)和眨眼率更可靠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/491b/4541947/d99795e43e84/sensors-15-17507-g001.jpg

相似文献

1
Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors.
Sensors (Basel). 2015 Jul 20;15(7):17507-33. doi: 10.3390/s150717507.
3
Mapping (and modeling) physiological movements during EEG-fMRI recordings: the added value of the video acquired simultaneously.
J Neurosci Methods. 2015 Jan 15;239:223-37. doi: 10.1016/j.jneumeth.2014.10.005. Epub 2014 Oct 22.
4
EmotionMeter: A Multimodal Framework for Recognizing Human Emotions.
IEEE Trans Cybern. 2019 Mar;49(3):1110-1122. doi: 10.1109/TCYB.2018.2797176. Epub 2018 Feb 8.
5
An innovative nonintrusive driver assistance system for vital signal monitoring.
IEEE J Biomed Health Inform. 2014 Nov;18(6):1932-9. doi: 10.1109/JBHI.2014.2305403.
6
A brain-computer interface method combined with eye tracking for 3D interaction.
J Neurosci Methods. 2010 Jul 15;190(2):289-98. doi: 10.1016/j.jneumeth.2010.05.008. Epub 2010 May 16.
7
Emotion recognition from EEG using higher order crossings.
IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):186-97. doi: 10.1109/TITB.2009.2034649. Epub 2009 Oct 23.
8
Improving the accuracy and reliability of remote system-calibration-free eye-gaze tracking.
IEEE Trans Biomed Eng. 2009 Jul;56(7):1891-900. doi: 10.1109/TBME.2009.2015955. Epub 2009 Mar 4.
9
Assessment of eye fatigue caused by 3D displays based on multimodal measurements.
Sensors (Basel). 2014 Sep 4;14(9):16467-85. doi: 10.3390/s140916467.
10
The temporal dynamics of processing emotions from vocal, facial, and bodily expressions.
Neuroimage. 2011 Sep 15;58(2):665-74. doi: 10.1016/j.neuroimage.2011.06.035. Epub 2011 Jun 22.

引用本文的文献

1
Multi-Input CNN-LSTM deep learning model for fear level classification based on EEG and peripheral physiological signals.
Front Psychol. 2023 Jun 1;14:1141801. doi: 10.3389/fpsyg.2023.1141801. eCollection 2023.
2
Experience with an Affective Robot Assistant for Children with Hearing Disabilities.
Int J Soc Robot. 2023;15(4):643-660. doi: 10.1007/s12369-021-00830-5. Epub 2021 Nov 16.
3
Predicting Individuals' Experienced Fear From Multimodal Physiological Responses to a Fear-Inducing Stimulus.
Adv Cogn Psychol. 2020 Nov 24;16(4):291-301. doi: 10.5709/acp-0303-x. eCollection 2020.
4
Human Emotion Recognition: Review of Sensors and Methods.
Sensors (Basel). 2020 Jan 21;20(3):592. doi: 10.3390/s20030592.
6
Application of Deep Learning System into the Development of Communication Device for Quadriplegic Patient.
Korean J Neurotrauma. 2019 Aug 14;15(2):88-94. doi: 10.13004/kjnt.2019.15.e17. eCollection 2019 Oct.
7
Acquisition System Based on Multisensors for Preserving Traditional Korean Painting.
Sensors (Basel). 2019 Oct 3;19(19):4292. doi: 10.3390/s19194292.
9
Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques.
Sensors (Basel). 2019 Apr 11;19(7):1738. doi: 10.3390/s19071738.

本文引用的文献

1
Spontaneous EEG activity and spontaneous emotion regulation.
Int J Psychophysiol. 2014 Dec;94(3):365-72. doi: 10.1016/j.ijpsycho.2014.09.003. Epub 2014 Sep 16.
2
Assessment of eye fatigue caused by 3D displays based on multimodal measurements.
Sensors (Basel). 2014 Sep 4;14(9):16467-85. doi: 10.3390/s140916467.
3
Long-Range Gaze Tracking System for Large Movements.
IEEE Trans Biomed Eng. 2013 Dec;60(12):3432-40. doi: 10.1109/TBME.2013.2266413. Epub 2013 Jun 6.
4
Estimation of the velocity and trajectory of three-dimensional reaching movements from non-invasive magnetoencephalography signals.
J Neural Eng. 2013 Apr;10(2):026006. doi: 10.1088/1741-2560/10/2/026006. Epub 2013 Feb 21.
5
EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits.
Biol Psychol. 2010 Feb;83(2):73-8. doi: 10.1016/j.biopsycho.2009.10.008. Epub 2009 Nov 6.
6
Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans.
Biol Psychiatry. 2008 Feb 1;63(3):263-70. doi: 10.1016/j.biopsych.2007.05.013. Epub 2007 Aug 28.
7
Brain-machine interfaces: past, present and future.
Trends Neurosci. 2006 Sep;29(9):536-46. doi: 10.1016/j.tins.2006.07.004. Epub 2006 Jul 21.
8
From emotion perception to emotion experience: emotions evoked by pictures and classical music.
Int J Psychophysiol. 2006 Apr;60(1):34-43. doi: 10.1016/j.ijpsycho.2005.04.007. Epub 2005 Jul 5.
9
Electrophysiological ratio markers for the balance between reward and punishment.
Brain Res Cogn Brain Res. 2005 Aug;24(3):685-90. doi: 10.1016/j.cogbrainres.2005.04.002.
10
Salivary cortisol levels and the coupling of midfrontal delta-beta oscillations.
Int J Psychophysiol. 2005 Jan;55(1):127-9. doi: 10.1016/j.ijpsycho.2004.07.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验