Suppr超能文献

铜氧化酶的结构和反应性模型:协同效应和新的反应性。

Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.

机构信息

†Grup de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain.

‡Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States.

出版信息

Acc Chem Res. 2015 Aug 18;48(8):2397-406. doi: 10.1021/acs.accounts.5b00187. Epub 2015 Jul 24.

Abstract

Dioxygen is widely used in nature as oxidant. Nature itself has served as inspiration to use O2 in chemical synthesis. However, the use of dioxygen as an oxidant is not straightforward. Its triplet ground-state electronic structure makes it unreactive toward most organic substrates. In natural systems, metalloenzymes activate O2 by reducing it to more reactive peroxide (O2(2-)) or superoxide (O2(-)) forms. Over the years, the development of model systems containing transition metals has become a convenient tool for unravelling O2-activation mechanistic aspects and reproducing the oxidative activity of enzymes. Several copper-based systems have been developed within this area. Tyrosinase is a copper-based O2-activating enzyme, whose structure and reactivity have been widely studied, and that serves as a paradigm for O2 activation at a dimetal site. It contains a dicopper center in its active site, and it catalyzes the regioselective ortho-hydroxylation of phenols to catechols and further oxidation to quinones. This represents an important step in melanin biosynthesis and it is mediated by a dicopper(II) side-on peroxo intermediate species. In the present accounts, our research in the field of copper models for oxygen activation is collected. We have developed m-xylyl linked dicopper systems that mimick structural and reactivity aspects of tyrosinase. Synergistic cooperation of the two copper(I) centers results in O2 binding and formation of bis(μ-oxo)dicopper(III) cores. These in turn bind and ortho-hydroxylate phenolates via an electrophilic attack of the oxo ligand over the arene. Interestingly the bis(μ-oxo)dicopper(III) cores can also engage in ortho-hydroxylation-defluorination of deprotonated 2-fluorophenols, substrates that are well-known enzyme inhibitors. Analysis of Cu2O2 species with different binding modes show that only the bis(μ-oxo)dicopper(III) cores can mediate the reaction. Finally, the use of unsymmetric systems for oxygen activation is a field that still remains rather unexplored. We envision that the unsymmetry might infere interesting new reactivities. We contributed to this topic with the development of an unsymmetric ligand (m-XYL(N3N4)), whose dicuprous complex reacts with O2 and forms a trans-peroxo dicopper(II) species that showed a markedly different reactivity compared to a symmetric trans-peroxo dicopper(II) analog. Nucleophilic reactivity is observed for the unsymmetric trans-peroxo dicopper(II) species against electrophilies such as H(+), CO2 and aldehydes, and neither oxygen atom transfer nor hydrogen abstraction is observed when reacting with oxygen atom acceptors (triphenyl phosphine, sulfides) and substrates with weak C-H bonds. Instead, electrophilic monooxygenase-like ortho-hydroxylation reactivity is described for these unsymmetric species upon reaction with phenolates. Finally, by using a second dinucleating unsymmetric ligand (L(N3N4)), we have described copper(I) containing heterodimetallic systems and explored their O2 binding properties. Site specific metalation led to the generation of dimeric heterometallic M'CuO2CuM' species from intermolecular O2 binding at copper sites.

摘要

氧气在自然界中被广泛用作氧化剂。自然界本身就为利用 O2 进行化学合成提供了灵感。然而,将氧气用作氧化剂并不简单。其三重态基态电子结构使其对大多数有机底物没有反应活性。在自然系统中,金属酶通过将 O2 还原为更具反应活性的过氧化物(O2(2-))或超氧化物(O2(-))形式来激活 O2。多年来,含有过渡金属的模型系统的开发已成为揭示 O2 激活机制方面和复制酶氧化活性的便捷工具。在该领域已经开发了几种基于铜的系统。酪氨酸酶是一种基于铜的 O2 激活酶,其结构和反应性已被广泛研究,并且是在双核位点激活 O2 的典范。它在其活性部位含有一个双核铜中心,并催化酚的区域选择性邻位羟化生成儿茶酚和进一步氧化生成醌。这代表了黑色素生物合成中的一个重要步骤,由双核(II)过氧中间物种介导。在本报告中,我们收集了我们在铜模型氧激活领域的研究。我们开发了 m-二甲苯连接的双核铜系统,模拟了酪氨酸酶的结构和反应性。两个铜(I)中心的协同合作导致 O2 结合和形成双(μ-氧)双核(III)核。这些反过来又通过芳环上的氧配体的亲电攻击结合并邻位羟化酚盐。有趣的是,双(μ-氧)双核(III)核还可以参与去质子化的 2-氟苯酚的邻位羟化-去氟化,这些底物是众所周知的酶抑制剂。具有不同结合模式的 Cu2O2 物种的分析表明,只有双(μ-氧)双核(III)核才能介导反应。最后,不对称体系用于氧激活是一个仍然相当未被探索的领域。我们设想不对称可能会产生有趣的新反应性。我们通过开发不对称配体(m-XYL(N3N4))对此做出了贡献,其二铜复合物与 O2 反应形成顺式过氧双核(II)物种,与对称顺式过氧双核(II)类似物相比,该物种表现出明显不同的反应性。与亲电试剂(如 H(+)、CO2 和醛)反应时,观察到不对称顺式过氧双核(II)物种的亲核反应性,而与氧原子接受体(三苯基膦、硫化物)和具有弱 C-H 键的底物反应时,观察不到氧原子转移或氢提取。相反,描述了这些不对称物种对酚盐的单加氧酶样邻位羟化反应性。最后,通过使用第二种双齿非对称配体(L(N3N4)),我们描述了含有铜(I)的杂双核体系并探索了它们的 O2 结合性质。在铜位点的分子间 O2 结合导致特定于位点的金属化生成双核异金属 M'CuO2CuM'物种。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验