Jha Pankaj K, Ni Xingjie, Wu Chihhui, Wang Yuan, Zhang Xiang
NSF Nanoscale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA.
Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
Phys Rev Lett. 2015 Jul 10;115(2):025501. doi: 10.1103/PhysRevLett.115.025501. Epub 2015 Jul 6.
An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.
各向异性量子真空(AQV)为量子光学、凝聚态物理等领域中控制光与物质的相互作用开辟了新途径。在此,我们从理论上证明了通过精心设计的亚波长尺度纳米天线阵列——一种超表面,能够在宏观距离上实现强各向异性量子真空。我们利用超表面的相位控制能力和偏振依赖响应,在数百个波长的距离上实现量子发射器衰减率的强各向异性。这种各向异性量子真空在具有正交跃迁的原子的辐射衰变通道之间引发量子干涉。利用超表面进行量子真空工程有望为原子光学、固态量子光学、量子信息处理等领域探索远程光与物质相互作用的新范式。