†Chemical Physics Department, Weizmann institute of Science, Rehovot 76100, Israel.
‡IMDEA Nanociencia, CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
J Am Chem Soc. 2015 Aug 19;137(32):10367-73. doi: 10.1021/jacs.5b06160. Epub 2015 Aug 6.
In contrast to globular proteins, the structure of repeat proteins is dominated by a regular set of short-range interactions. This property may confer on the native state of such proteins significant elasticity. We probe the molecular origin of the spring-like behavior of repeat proteins using a designed tetratricopeptide repeat protein with three repeat units (CTPR3). Single-molecule fluorescence studies of variants of the protein with FRET pairs at different positions show a continuous expansion of the folded state of CTPR3 at low concentrations of a chemical denaturant, preceding the all-or-none transition to the unfolded state. This remarkable native-state expansion can be explained quantitatively by a reduction in the spring constant of the structure. Circular dichroism and tryptophan fluorescence spectroscopy further show that the expansion does not involve either unwinding of CTPR3 helices or unraveling of interactions within repeats. These findings point to hydrophobic inter-repeat contacts as the source of the elasticity of repeat proteins.
与球状蛋白不同,重复蛋白的结构主要由一系列规则的短程相互作用决定。这种特性可能使这类蛋白质的天然状态具有显著的弹性。我们使用具有三个重复单元的设计四肽重复蛋白(CTPR3)来研究重复蛋白的弹簧样行为的分子起源。在不同位置具有 FRET 对的蛋白质变体的单分子荧光研究表明,在化学变性剂的低浓度下,CTPR3 的折叠状态连续扩展,然后才会发生全或无的向展开状态的转变。结构的弹簧常数的降低可以定量地解释这种显著的天然状态扩展。圆二色性和色氨酸荧光光谱进一步表明,这种扩展既不涉及 CTPR3 螺旋的展开,也不涉及重复内部相互作用的解开。这些发现表明,重复蛋白的弹性来源于疏水性的重复间接触。